sys76-kudu-ML
AMD Ryzen 9 5900HX testing with a System76 Kudu (1.07.09RSA1 BIOS) and AMD Cezanne on Pop 21.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2202165-NE-SYS76KUDU88&grt.
Caffe
Model: AlexNet - Acceleration: CPU - Iterations: 100
Caffe
Model: AlexNet - Acceleration: CPU - Iterations: 200
Caffe
Model: AlexNet - Acceleration: CPU - Iterations: 1000
Caffe
Model: GoogleNet - Acceleration: CPU - Iterations: 100
Caffe
Model: GoogleNet - Acceleration: CPU - Iterations: 200
Caffe
Model: GoogleNet - Acceleration: CPU - Iterations: 1000
DeepSpeech
Acceleration: CPU
ECP-CANDLE
Benchmark: P1B2
ECP-CANDLE
Benchmark: P3B1
ECP-CANDLE
Benchmark: P3B2
LeelaChessZero
Backend: BLAS
Mlpack Benchmark
Benchmark: scikit_ica
Mlpack Benchmark
Benchmark: scikit_qda
Mlpack Benchmark
Benchmark: scikit_svm
Mlpack Benchmark
Benchmark: scikit_linearridgeregression
Mobile Neural Network
Model: mobilenetV3
Mobile Neural Network
Model: squeezenetv1.1
Mobile Neural Network
Model: resnet-v2-50
Mobile Neural Network
Model: SqueezeNetV1.0
Mobile Neural Network
Model: MobileNetV2_224
Mobile Neural Network
Model: mobilenet-v1-1.0
Mobile Neural Network
Model: inception-v3
NCNN
Target: CPU - Model: mobilenet
NCNN
Target: CPU-v2-v2 - Model: mobilenet-v2
NCNN
Target: CPU-v3-v3 - Model: mobilenet-v3
NCNN
Target: CPU - Model: shufflenet-v2
NCNN
Target: CPU - Model: mnasnet
NCNN
Target: CPU - Model: efficientnet-b0
NCNN
Target: CPU - Model: blazeface
NCNN
Target: CPU - Model: googlenet
NCNN
Target: CPU - Model: vgg16
NCNN
Target: CPU - Model: resnet18
NCNN
Target: CPU - Model: alexnet
NCNN
Target: CPU - Model: resnet50
NCNN
Target: CPU - Model: yolov4-tiny
NCNN
Target: CPU - Model: squeezenet_ssd
NCNN
Target: CPU - Model: regnety_400m
NCNN
Target: Vulkan GPU - Model: mobilenet
NCNN
Target: Vulkan GPU-v2-v2 - Model: mobilenet-v2
NCNN
Target: Vulkan GPU-v3-v3 - Model: mobilenet-v3
NCNN
Target: Vulkan GPU - Model: shufflenet-v2
NCNN
Target: Vulkan GPU - Model: mnasnet
NCNN
Target: Vulkan GPU - Model: efficientnet-b0
NCNN
Target: Vulkan GPU - Model: blazeface
NCNN
Target: Vulkan GPU - Model: googlenet
NCNN
Target: Vulkan GPU - Model: vgg16
NCNN
Target: Vulkan GPU - Model: resnet18
NCNN
Target: Vulkan GPU - Model: alexnet
NCNN
Target: Vulkan GPU - Model: resnet50
NCNN
Target: Vulkan GPU - Model: yolov4-tiny
NCNN
Target: Vulkan GPU - Model: squeezenet_ssd
NCNN
Target: Vulkan GPU - Model: regnety_400m
Numpy Benchmark
oneDNN
Harness: IP Shapes 1D - Data Type: f32 - Engine: CPU
oneDNN
Harness: IP Shapes 3D - Data Type: f32 - Engine: CPU
oneDNN
Harness: IP Shapes 1D - Data Type: u8s8f32 - Engine: CPU
oneDNN
Harness: IP Shapes 3D - Data Type: u8s8f32 - Engine: CPU
oneDNN
Harness: Convolution Batch Shapes Auto - Data Type: f32 - Engine: CPU
oneDNN
Harness: Deconvolution Batch shapes_1d - Data Type: f32 - Engine: CPU
oneDNN
Harness: Deconvolution Batch shapes_3d - Data Type: f32 - Engine: CPU
oneDNN
Harness: Convolution Batch Shapes Auto - Data Type: u8s8f32 - Engine: CPU
oneDNN
Harness: Deconvolution Batch shapes_1d - Data Type: u8s8f32 - Engine: CPU
oneDNN
Harness: Deconvolution Batch shapes_3d - Data Type: u8s8f32 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Training - Data Type: f32 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Inference - Data Type: f32 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Training - Data Type: u8s8f32 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Inference - Data Type: u8s8f32 - Engine: CPU
oneDNN
Harness: Matrix Multiply Batch Shapes Transformer - Data Type: f32 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Training - Data Type: bf16bf16bf16 - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Inference - Data Type: bf16bf16bf16 - Engine: CPU
oneDNN
Harness: Matrix Multiply Batch Shapes Transformer - Data Type: u8s8f32 - Engine: CPU
OpenCV
Test: DNN - Deep Neural Network
PlaidML
FP16: No - Mode: Inference - Network: VGG16 - Device: CPU
PlaidML
FP16: No - Mode: Inference - Network: ResNet 50 - Device: CPU
R Benchmark
RNNoise
TensorFlow Lite
Model: SqueezeNet
TensorFlow Lite
Model: Inception V4
TensorFlow Lite
Model: NASNet Mobile
TensorFlow Lite
Model: Mobilenet Float
TensorFlow Lite
Model: Mobilenet Quant
TensorFlow Lite
Model: Inception ResNet V2
TNN
Target: CPU - Model: DenseNet
TNN
Target: CPU - Model: MobileNet v2
TNN
Target: CPU - Model: SqueezeNet v2
TNN
Target: CPU - Model: SqueezeNet v1.1
Phoronix Test Suite v10.8.5