ffhgf AMD Ryzen 5 5500U testing with a NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS) and AMD Lucienne 512MB on Tuxedo 22.04 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2403164-NE-FFHGF146295 .
ffhgf Processor Motherboard Chipset Memory Disk Graphics Audio Network OS Kernel Desktop Display Server OpenGL Vulkan Compiler File-System Screen Resolution a b c AMD Ryzen 5 5500U @ 4.06GHz (6 Cores / 12 Threads) NB01 TUXEDO Aura 15 Gen2 NL5xNU (1.07.11RTR1 BIOS) AMD Renoir/Cezanne 2 x 8GB DDR4-3200MT/s Samsung M471A1K43DB1-CWE Samsung SSD 970 EVO Plus 500GB AMD Lucienne 512MB (1800/400MHz) AMD Renoir Radeon HD Audio Realtek RTL8111/8168/8411 + Intel Wi-Fi 6 AX200 Tuxedo 22.04 6.0.0-1010-oem (x86_64) KDE Plasma 5.26.5 X Server 1.21.1.3 4.6 Mesa 22.3.7 (LLVM 14.0.0 DRM 3.48) 1.3.230 GCC 11.3.0 ext4 1920x1080 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-xKiWfi/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: amd-pstate ondemand (Boost: Enabled) - CPU Microcode: 0x8608103 Python Details - Python 3.10.6 Security Details - itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Mitigation of untrained return thunk; SMT enabled with STIBP protection + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected
ffhgf jpegxl: PNG - 80 jpegxl: PNG - 90 jpegxl: JPEG - 80 jpegxl: JPEG - 90 jpegxl: PNG - 100 jpegxl: JPEG - 100 jpegxl-decode: 1 jpegxl-decode: All srsran: PDSCH Processor Benchmark, Throughput Total srsran: PDSCH Processor Benchmark, Throughput Thread svt-av1: Preset 4 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 12 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 4 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 12 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p compress-pbzip2: FreeBSD-13.0-RELEASE-amd64-memstick.img Compression primesieve: 1e12 primesieve: 1e13 onednn: IP Shapes 1D - CPU onednn: IP Shapes 3D - CPU onednn: Convolution Batch Shapes Auto - CPU onednn: Deconvolution Batch shapes_1d - CPU onednn: Deconvolution Batch shapes_3d - CPU onednn: Recurrent Neural Network Training - CPU onednn: Recurrent Neural Network Inference - CPU deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Asynchronous Multi-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Baseline - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream deepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream draco: Lion draco: Church Facade openvino: Face Detection FP16 - CPU openvino: Face Detection FP16 - CPU openvino: Person Detection FP16 - CPU openvino: Person Detection FP16 - CPU openvino: Person Detection FP32 - CPU openvino: Person Detection FP32 - CPU openvino: Vehicle Detection FP16 - CPU openvino: Vehicle Detection FP16 - CPU openvino: Face Detection FP16-INT8 - CPU openvino: Face Detection FP16-INT8 - CPU openvino: Face Detection Retail FP16 - CPU openvino: Face Detection Retail FP16 - CPU openvino: Road Segmentation ADAS FP16 - CPU openvino: Road Segmentation ADAS FP16 - CPU openvino: Vehicle Detection FP16-INT8 - CPU openvino: Vehicle Detection FP16-INT8 - CPU openvino: Weld Porosity Detection FP16 - CPU openvino: Weld Porosity Detection FP16 - CPU openvino: Face Detection Retail FP16-INT8 - CPU openvino: Face Detection Retail FP16-INT8 - CPU openvino: Road Segmentation ADAS FP16-INT8 - CPU openvino: Road Segmentation ADAS FP16-INT8 - CPU openvino: Machine Translation EN To DE FP16 - CPU openvino: Machine Translation EN To DE FP16 - CPU openvino: Weld Porosity Detection FP16-INT8 - CPU openvino: Weld Porosity Detection FP16-INT8 - CPU openvino: Person Vehicle Bike Detection FP16 - CPU openvino: Person Vehicle Bike Detection FP16 - CPU openvino: Noise Suppression Poconet-Like FP16 - CPU openvino: Noise Suppression Poconet-Like FP16 - CPU openvino: Handwritten English Recognition FP16 - CPU openvino: Handwritten English Recognition FP16 - CPU openvino: Person Re-Identification Retail FP16 - CPU openvino: Person Re-Identification Retail FP16 - CPU openvino: Age Gender Recognition Retail 0013 FP16 - CPU openvino: Age Gender Recognition Retail 0013 FP16 - CPU openvino: Handwritten English Recognition FP16-INT8 - CPU openvino: Handwritten English Recognition FP16-INT8 - CPU openvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPU openvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPU encode-wavpack: WAV To WavPack v-ray: CPU a b c 17.594 16.214 17.449 16.51 6.88 6.808 54.82 191.398 2124.4 314.8 2.06 16.292 43.434 45.109 7.495 51.475 202.302 245.376 14.579856 37.342 473.567 7.22621 14.3913 22.4888 11.7594 11.7203 6067.92 3135.38 4.3724 681.9059 4.3416 230.3157 101.4254 29.534 85.9092 11.6311 50.0338 59.8992 46.5486 21.4706 312.3789 9.5805 220.4253 4.5244 50.6529 59.1547 46.6998 21.4013 24.9236 120.27 23.0973 43.2842 40.87 73.352 37.4422 26.698 4.7151 634.5354 4.7614 210.0086 51.4072 58.3096 39.0337 25.6066 4.5018 665.1773 4.3554 229.5887 6409 9515 1.45 2740.33 14.83 269.72 14.71 271.53 102.94 38.82 1.71 2321.44 378.86 10.53 23.86 167.55 141.94 28.16 131.99 30.28 459.92 8.69 70.33 56.83 17.17 232.78 188.24 31.85 191.4 20.87 221.74 18.01 60.91 98.43 212.6 18.79 3160.64 1.88 65.59 91.44 5051.32 1.18 7.692 7052 17.512 16.19 17.445 16.492 6.88 6.812 55.055 197.721 2110.1 302.6 2.073 16.46 45.377 45.65 7.555 52.064 206.832 250.82 14.50946 36.222 464.649 7.3269 14.3419 22.5758 12.086 11.9338 6016.25 3110.94 4.4546 670.4488 4.3352 230.6559 101.5569 29.4939 86.7099 11.5237 51.5443 58.1743 46.7715 21.3682 314.947 9.5031 217.6355 4.5824 51.3019 58.4502 46.6428 21.4271 25.18 118.9649 23.1057 43.2686 40.953 73.1801 37.5286 26.6361 4.7167 633.8932 4.763 209.9382 51.1871 58.5538 39.0245 25.6128 4.49 665.4893 4.358 229.4528 6315 9536 1.44 2748.14 14.56 274.43 14.57 274 103.79 38.5 1.62 2456.33 376.67 10.59 23.97 166.76 140.29 28.49 131.82 30.32 458.71 8.71 70.31 56.84 17.27 231.3 188.05 31.89 191 20.92 221.65 18.02 61.46 97.56 212.76 18.78 3147.58 1.89 65.61 91.39 5066.06 1.17 7.578 7019 17.606 16.28 17.532 16.489 6.897 6.815 55.732 197.639 2116.7 307 2.077 16.48 45.438 45.471 7.569 52.162 204.567 252.602 14.490876 36.284 462.998 7.1952 14.289 22.5887 11.5182 11.6718 6024.94 3118.61 4.4236 672.1069 4.349 229.9275 101.7126 29.4531 86.8258 11.5086 50.6221 59.2132 46.7201 21.3915 314.5417 9.5153 221.3073 4.5062 51.3099 58.4006 46.7734 21.3677 25.0064 119.8962 23.0607 43.353 40.8905 73.2979 37.5073 26.6514 4.7347 632.7488 4.7761 209.3586 51.139 58.6004 39.0886 25.571 4.49 666.7407 4.3291 230.9809 6400 9766 1.45 2752.56 14.9 268.2 14.51 275.49 103.13 38.74 1.62 2437.33 376.3 10.6 23.94 166.96 140.41 28.46 132.29 30.22 453.71 8.8 70.01 57.09 17.26 231.39 187.42 32 190.23 21 221.88 18 61.48 97.51 211.95 18.85 3154.67 1.88 65.6 91.41 5032.95 1.18 7.794 7052 OpenBenchmarking.org
JPEG-XL libjxl Input: PNG - Quality: 80 OpenBenchmarking.org MP/s, More Is Better JPEG-XL libjxl 0.10.1 Input: PNG - Quality: 80 a b c 4 8 12 16 20 17.59 17.51 17.61 1. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm
JPEG-XL libjxl Input: PNG - Quality: 90 OpenBenchmarking.org MP/s, More Is Better JPEG-XL libjxl 0.10.1 Input: PNG - Quality: 90 a b c 4 8 12 16 20 16.21 16.19 16.28 1. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm
JPEG-XL libjxl Input: JPEG - Quality: 80 OpenBenchmarking.org MP/s, More Is Better JPEG-XL libjxl 0.10.1 Input: JPEG - Quality: 80 a b c 4 8 12 16 20 17.45 17.45 17.53 1. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm
JPEG-XL libjxl Input: JPEG - Quality: 90 OpenBenchmarking.org MP/s, More Is Better JPEG-XL libjxl 0.10.1 Input: JPEG - Quality: 90 a b c 4 8 12 16 20 16.51 16.49 16.49 1. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm
JPEG-XL libjxl Input: PNG - Quality: 100 OpenBenchmarking.org MP/s, More Is Better JPEG-XL libjxl 0.10.1 Input: PNG - Quality: 100 a b c 2 4 6 8 10 6.880 6.880 6.897 1. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm
JPEG-XL libjxl Input: JPEG - Quality: 100 OpenBenchmarking.org MP/s, More Is Better JPEG-XL libjxl 0.10.1 Input: JPEG - Quality: 100 a b c 2 4 6 8 10 6.808 6.812 6.815 1. (CXX) g++ options: -fno-rtti -O3 -fPIE -pie -lm
JPEG-XL Decoding libjxl CPU Threads: 1 OpenBenchmarking.org MP/s, More Is Better JPEG-XL Decoding libjxl 0.10.1 CPU Threads: 1 a b c 13 26 39 52 65 54.82 55.06 55.73
JPEG-XL Decoding libjxl CPU Threads: All OpenBenchmarking.org MP/s, More Is Better JPEG-XL Decoding libjxl 0.10.1 CPU Threads: All a b c 40 80 120 160 200 191.40 197.72 197.64
srsRAN Project Test: PDSCH Processor Benchmark, Throughput Total OpenBenchmarking.org Mbps, More Is Better srsRAN Project 23.10.1-20240219 Test: PDSCH Processor Benchmark, Throughput Total a b c 500 1000 1500 2000 2500 2124.4 2110.1 2116.7 1. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl
srsRAN Project Test: PDSCH Processor Benchmark, Throughput Thread OpenBenchmarking.org Mbps, More Is Better srsRAN Project 23.10.1-20240219 Test: PDSCH Processor Benchmark, Throughput Thread a b c 70 140 210 280 350 314.8 302.6 307.0 1. (CXX) g++ options: -march=native -mavx2 -mavx -msse4.1 -mfma -O3 -fno-trapping-math -fno-math-errno -ldl
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 4K a b c 0.4673 0.9346 1.4019 1.8692 2.3365 2.060 2.073 2.077 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 4K a b c 4 8 12 16 20 16.29 16.46 16.48 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 4K a b c 10 20 30 40 50 43.43 45.38 45.44 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 4K a b c 10 20 30 40 50 45.11 45.65 45.47 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 4 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 4 - Input: Bosphorus 1080p a b c 2 4 6 8 10 7.495 7.555 7.569 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 8 - Input: Bosphorus 1080p a b c 12 24 36 48 60 51.48 52.06 52.16 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 12 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 12 - Input: Bosphorus 1080p a b c 50 100 150 200 250 202.30 206.83 204.57 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.0 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b c 60 120 180 240 300 245.38 250.82 252.60 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
Parallel BZIP2 Compression FreeBSD-13.0-RELEASE-amd64-memstick.img Compression OpenBenchmarking.org Seconds, Fewer Is Better Parallel BZIP2 Compression 1.1.13 FreeBSD-13.0-RELEASE-amd64-memstick.img Compression a b c 4 8 12 16 20 14.58 14.51 14.49 1. (CXX) g++ options: -O2 -pthread -lbz2 -lpthread
Primesieve Length: 1e12 OpenBenchmarking.org Seconds, Fewer Is Better Primesieve 12.1 Length: 1e12 a b c 9 18 27 36 45 37.34 36.22 36.28 1. (CXX) g++ options: -O3
Primesieve Length: 1e13 OpenBenchmarking.org Seconds, Fewer Is Better Primesieve 12.1 Length: 1e13 a b c 100 200 300 400 500 473.57 464.65 463.00 1. (CXX) g++ options: -O3
oneDNN Harness: IP Shapes 1D - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: IP Shapes 1D - Engine: CPU a b c 2 4 6 8 10 7.22621 7.32690 7.19520 MIN: 6.22 MIN: 6.31 MIN: 6.19 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: IP Shapes 3D - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: IP Shapes 3D - Engine: CPU a b c 4 8 12 16 20 14.39 14.34 14.29 MIN: 13.56 MIN: 13.53 MIN: 13.53 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Convolution Batch Shapes Auto - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Convolution Batch Shapes Auto - Engine: CPU a b c 5 10 15 20 25 22.49 22.58 22.59 MIN: 21.68 MIN: 21.78 MIN: 21.74 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Deconvolution Batch shapes_1d - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Deconvolution Batch shapes_1d - Engine: CPU a b c 3 6 9 12 15 11.76 12.09 11.52 MIN: 8.57 MIN: 8.58 MIN: 8.53 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Deconvolution Batch shapes_3d - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Deconvolution Batch shapes_3d - Engine: CPU a b c 3 6 9 12 15 11.72 11.93 11.67 MIN: 11.2 MIN: 11.26 MIN: 11.19 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Recurrent Neural Network Training - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Recurrent Neural Network Training - Engine: CPU a b c 1300 2600 3900 5200 6500 6067.92 6016.25 6024.94 MIN: 6009.45 MIN: 5939.52 MIN: 5948.41 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
oneDNN Harness: Recurrent Neural Network Inference - Engine: CPU OpenBenchmarking.org ms, Fewer Is Better oneDNN 3.4 Harness: Recurrent Neural Network Inference - Engine: CPU a b c 700 1400 2100 2800 3500 3135.38 3110.94 3118.61 MIN: 3072.86 MIN: 3038.51 MIN: 3052.5 1. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream a b c 1.0023 2.0046 3.0069 4.0092 5.0115 4.3724 4.4546 4.4236
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream a b c 150 300 450 600 750 681.91 670.45 672.11
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream a b c 0.9785 1.957 2.9355 3.914 4.8925 4.3416 4.3352 4.3490
Neural Magic DeepSparse Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream a b c 50 100 150 200 250 230.32 230.66 229.93
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 20 40 60 80 100 101.43 101.56 101.71
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 7 14 21 28 35 29.53 29.49 29.45
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream a b c 20 40 60 80 100 85.91 86.71 86.83
Neural Magic DeepSparse Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream a b c 3 6 9 12 15 11.63 11.52 11.51
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream a b c 12 24 36 48 60 50.03 51.54 50.62
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream a b c 13 26 39 52 65 59.90 58.17 59.21
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream a b c 11 22 33 44 55 46.55 46.77 46.72
Neural Magic DeepSparse Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream a b c 5 10 15 20 25 21.47 21.37 21.39
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 70 140 210 280 350 312.38 314.95 314.54
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 3 6 9 12 15 9.5805 9.5031 9.5153
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream a b c 50 100 150 200 250 220.43 217.64 221.31
Neural Magic DeepSparse Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream a b c 1.031 2.062 3.093 4.124 5.155 4.5244 4.5824 4.5062
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream a b c 12 24 36 48 60 50.65 51.30 51.31
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream a b c 13 26 39 52 65 59.15 58.45 58.40
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream a b c 11 22 33 44 55 46.70 46.64 46.77
Neural Magic DeepSparse Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream a b c 5 10 15 20 25 21.40 21.43 21.37
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 6 12 18 24 30 24.92 25.18 25.01
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 30 60 90 120 150 120.27 118.96 119.90
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream a b c 6 12 18 24 30 23.10 23.11 23.06
Neural Magic DeepSparse Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream a b c 10 20 30 40 50 43.28 43.27 43.35
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream a b c 9 18 27 36 45 40.87 40.95 40.89
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream a b c 16 32 48 64 80 73.35 73.18 73.30
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream a b c 9 18 27 36 45 37.44 37.53 37.51
Neural Magic DeepSparse Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream a b c 6 12 18 24 30 26.70 26.64 26.65
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a b c 1.0653 2.1306 3.1959 4.2612 5.3265 4.7151 4.7167 4.7347
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream a b c 140 280 420 560 700 634.54 633.89 632.75
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream a b c 1.0746 2.1492 3.2238 4.2984 5.373 4.7614 4.7630 4.7761
Neural Magic DeepSparse Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream a b c 50 100 150 200 250 210.01 209.94 209.36
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 12 24 36 48 60 51.41 51.19 51.14
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream a b c 13 26 39 52 65 58.31 58.55 58.60
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream a b c 9 18 27 36 45 39.03 39.02 39.09
Neural Magic DeepSparse Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream a b c 6 12 18 24 30 25.61 25.61 25.57
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream a b c 1.0129 2.0258 3.0387 4.0516 5.0645 4.5018 4.4900 4.4900
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream a b c 140 280 420 560 700 665.18 665.49 666.74
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org items/sec, More Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream a b c 0.9806 1.9612 2.9418 3.9224 4.903 4.3554 4.3580 4.3291
Neural Magic DeepSparse Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream OpenBenchmarking.org ms/batch, Fewer Is Better Neural Magic DeepSparse 1.7 Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream a b c 50 100 150 200 250 229.59 229.45 230.98
Google Draco Model: Lion OpenBenchmarking.org ms, Fewer Is Better Google Draco 1.5.6 Model: Lion a b c 1400 2800 4200 5600 7000 6409 6315 6400 1. (CXX) g++ options: -O3
Google Draco Model: Church Facade OpenBenchmarking.org ms, Fewer Is Better Google Draco 1.5.6 Model: Church Facade a b c 2K 4K 6K 8K 10K 9515 9536 9766 1. (CXX) g++ options: -O3
OpenVINO Model: Face Detection FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Face Detection FP16 - Device: CPU a b c 0.3263 0.6526 0.9789 1.3052 1.6315 1.45 1.44 1.45 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Face Detection FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Face Detection FP16 - Device: CPU a b c 600 1200 1800 2400 3000 2740.33 2748.14 2752.56 MIN: 2203.03 / MAX: 2836.59 MIN: 2160.17 / MAX: 2860.69 MIN: 2291.93 / MAX: 2877.15 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Person Detection FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Person Detection FP16 - Device: CPU a b c 4 8 12 16 20 14.83 14.56 14.90 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Person Detection FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Person Detection FP16 - Device: CPU a b c 60 120 180 240 300 269.72 274.43 268.20 MIN: 234.64 / MAX: 306.72 MIN: 148.02 / MAX: 308.41 MIN: 136.25 / MAX: 310.48 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Person Detection FP32 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Person Detection FP32 - Device: CPU a b c 4 8 12 16 20 14.71 14.57 14.51 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Person Detection FP32 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Person Detection FP32 - Device: CPU a b c 60 120 180 240 300 271.53 274.00 275.49 MIN: 210.59 / MAX: 309.26 MIN: 210.36 / MAX: 310.41 MIN: 229.07 / MAX: 422.38 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Vehicle Detection FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Vehicle Detection FP16 - Device: CPU a b c 20 40 60 80 100 102.94 103.79 103.13 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Vehicle Detection FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Vehicle Detection FP16 - Device: CPU a b c 9 18 27 36 45 38.82 38.50 38.74 MIN: 25.47 / MAX: 87.45 MIN: 29.34 / MAX: 61 MIN: 18.87 / MAX: 78.37 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Face Detection FP16-INT8 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Face Detection FP16-INT8 - Device: CPU a b c 0.3848 0.7696 1.1544 1.5392 1.924 1.71 1.62 1.62 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Face Detection FP16-INT8 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Face Detection FP16-INT8 - Device: CPU a b c 500 1000 1500 2000 2500 2321.44 2456.33 2437.33 MIN: 2113.11 / MAX: 3253.9 MIN: 1779.95 / MAX: 3009.84 MIN: 2025.66 / MAX: 3552.28 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Face Detection Retail FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Face Detection Retail FP16 - Device: CPU a b c 80 160 240 320 400 378.86 376.67 376.30 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Face Detection Retail FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Face Detection Retail FP16 - Device: CPU a b c 3 6 9 12 15 10.53 10.59 10.60 MIN: 5.73 / MAX: 24.87 MIN: 7.59 / MAX: 21.42 MIN: 7.14 / MAX: 22.37 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Road Segmentation ADAS FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Road Segmentation ADAS FP16 - Device: CPU a b c 6 12 18 24 30 23.86 23.97 23.94 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Road Segmentation ADAS FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Road Segmentation ADAS FP16 - Device: CPU a b c 40 80 120 160 200 167.55 166.76 166.96 MIN: 116.23 / MAX: 213.59 MIN: 73.08 / MAX: 216.16 MIN: 67.28 / MAX: 215 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Vehicle Detection FP16-INT8 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Vehicle Detection FP16-INT8 - Device: CPU a b c 30 60 90 120 150 141.94 140.29 140.41 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Vehicle Detection FP16-INT8 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Vehicle Detection FP16-INT8 - Device: CPU a b c 7 14 21 28 35 28.16 28.49 28.46 MIN: 22.61 / MAX: 42.4 MIN: 16.22 / MAX: 42.86 MIN: 22.46 / MAX: 44.26 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Weld Porosity Detection FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Weld Porosity Detection FP16 - Device: CPU a b c 30 60 90 120 150 131.99 131.82 132.29 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Weld Porosity Detection FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Weld Porosity Detection FP16 - Device: CPU a b c 7 14 21 28 35 30.28 30.32 30.22 MIN: 25.1 / MAX: 48.08 MIN: 17.72 / MAX: 46.79 MIN: 23.15 / MAX: 46.15 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Face Detection Retail FP16-INT8 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Face Detection Retail FP16-INT8 - Device: CPU a b c 100 200 300 400 500 459.92 458.71 453.71 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Face Detection Retail FP16-INT8 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Face Detection Retail FP16-INT8 - Device: CPU a b c 2 4 6 8 10 8.69 8.71 8.80 MIN: 6.54 / MAX: 18.65 MIN: 5.16 / MAX: 17.4 MIN: 5.6 / MAX: 19.39 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Road Segmentation ADAS FP16-INT8 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Road Segmentation ADAS FP16-INT8 - Device: CPU a b c 16 32 48 64 80 70.33 70.31 70.01 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Road Segmentation ADAS FP16-INT8 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Road Segmentation ADAS FP16-INT8 - Device: CPU a b c 13 26 39 52 65 56.83 56.84 57.09 MIN: 42.49 / MAX: 78.95 MIN: 34.6 / MAX: 77.32 MIN: 33.74 / MAX: 79.45 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Machine Translation EN To DE FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Machine Translation EN To DE FP16 - Device: CPU a b c 4 8 12 16 20 17.17 17.27 17.26 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Machine Translation EN To DE FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Machine Translation EN To DE FP16 - Device: CPU a b c 50 100 150 200 250 232.78 231.30 231.39 MIN: 158.33 / MAX: 295.68 MIN: 164.36 / MAX: 262.63 MIN: 171.44 / MAX: 265.55 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Weld Porosity Detection FP16-INT8 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Weld Porosity Detection FP16-INT8 - Device: CPU a b c 40 80 120 160 200 188.24 188.05 187.42 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Weld Porosity Detection FP16-INT8 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Weld Porosity Detection FP16-INT8 - Device: CPU a b c 7 14 21 28 35 31.85 31.89 32.00 MIN: 25.39 / MAX: 45.6 MIN: 18.32 / MAX: 45.73 MIN: 23.29 / MAX: 47.13 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Person Vehicle Bike Detection FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Person Vehicle Bike Detection FP16 - Device: CPU a b c 40 80 120 160 200 191.40 191.00 190.23 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Person Vehicle Bike Detection FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Person Vehicle Bike Detection FP16 - Device: CPU a b c 5 10 15 20 25 20.87 20.92 21.00 MIN: 13.72 / MAX: 44.43 MIN: 14.64 / MAX: 37.38 MIN: 15.65 / MAX: 37.11 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Noise Suppression Poconet-Like FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Noise Suppression Poconet-Like FP16 - Device: CPU a b c 50 100 150 200 250 221.74 221.65 221.88 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Noise Suppression Poconet-Like FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Noise Suppression Poconet-Like FP16 - Device: CPU a b c 4 8 12 16 20 18.01 18.02 18.00 MIN: 14.99 / MAX: 32.02 MIN: 13.78 / MAX: 33.52 MIN: 13.26 / MAX: 32.43 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Handwritten English Recognition FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Handwritten English Recognition FP16 - Device: CPU a b c 14 28 42 56 70 60.91 61.46 61.48 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Handwritten English Recognition FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Handwritten English Recognition FP16 - Device: CPU a b c 20 40 60 80 100 98.43 97.56 97.51 MIN: 63.19 / MAX: 224.34 MIN: 63.86 / MAX: 122.52 MIN: 64.36 / MAX: 125.21 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Person Re-Identification Retail FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Person Re-Identification Retail FP16 - Device: CPU a b c 50 100 150 200 250 212.60 212.76 211.95 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Person Re-Identification Retail FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Person Re-Identification Retail FP16 - Device: CPU a b c 5 10 15 20 25 18.79 18.78 18.85 MIN: 15.44 / MAX: 33.87 MIN: 12.18 / MAX: 33.46 MIN: 11.63 / MAX: 37.02 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU a b c 700 1400 2100 2800 3500 3160.64 3147.58 3154.67 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU a b c 0.4253 0.8506 1.2759 1.7012 2.1265 1.88 1.89 1.88 MIN: 1.01 / MAX: 12.21 MIN: 1.01 / MAX: 84.2 MIN: 0.95 / MAX: 10.89 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Handwritten English Recognition FP16-INT8 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Handwritten English Recognition FP16-INT8 - Device: CPU a b c 15 30 45 60 75 65.59 65.61 65.60 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Handwritten English Recognition FP16-INT8 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Handwritten English Recognition FP16-INT8 - Device: CPU a b c 20 40 60 80 100 91.44 91.39 91.41 MIN: 77.37 / MAX: 116.23 MIN: 75.74 / MAX: 114.4 MIN: 59.9 / MAX: 113.94 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU OpenBenchmarking.org FPS, More Is Better OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU a b c 1100 2200 3300 4400 5500 5051.32 5066.06 5032.95 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
OpenVINO Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU OpenBenchmarking.org ms, Fewer Is Better OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU a b c 0.2655 0.531 0.7965 1.062 1.3275 1.18 1.17 1.18 MIN: 0.58 / MAX: 10.19 MIN: 0.58 / MAX: 9.01 MIN: 0.59 / MAX: 15.55 1. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl
WavPack Audio Encoding WAV To WavPack OpenBenchmarking.org Seconds, Fewer Is Better WavPack Audio Encoding 5.7 WAV To WavPack a b c 2 4 6 8 10 7.692 7.578 7.794
Chaos Group V-RAY Mode: CPU OpenBenchmarking.org vsamples, More Is Better Chaos Group V-RAY 6.0 Mode: CPU a b c 1500 3000 4500 6000 7500 7052 7019 7052
Phoronix Test Suite v10.8.5