pytorch 2.2.1 ryzen

AMD Ryzen 9 7950X 16-Core testing with a ASUS ROG STRIX X670E-E GAMING WIFI (1905 BIOS) and NVIDIA GeForce RTX 3080 10GB on Ubuntu 23.10 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2403270-PTS-PYTORCH233&grr&sor.

pytorch 2.2.1 ryzenProcessorMotherboardChipsetMemoryDiskGraphicsAudioMonitorNetworkOSKernelDesktopDisplay ServerDisplay DriverOpenGLOpenCLCompilerFile-SystemScreen ResolutionabcdAMD Ryzen 9 7950X 16-Core @ 5.88GHz (16 Cores / 32 Threads)ASUS ROG STRIX X670E-E GAMING WIFI (1905 BIOS)AMD Device 14d82 x 16GB DRAM-6000MT/s G Skill F5-6000J3038F16G2000GB Samsung SSD 980 PRO 2TB + 123GB SanDisk 3.2Gen1NVIDIA GeForce RTX 3080 10GBNVIDIA GA102 HD AudioDELL U2723QEIntel I225-V + Intel Wi-Fi 6 AX210/AX211/AX411Ubuntu 23.106.7.0-060700-generic (x86_64)GNOME Shell 45.2X Server 1.21.1.7NVIDIA 550.54.144.6.0OpenCL 3.0 CUDA 12.4.89GCC 13.2.0ext43840x2160OpenBenchmarking.orgKernel Details- Transparent Huge Pages: madviseProcessor Details- Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xa601206 Python Details- Python 3.11.6Security Details- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional STIBP: always-on RSB filling PBRSB-eIBRS: Not affected + srbds: Not affected + tsx_async_abort: Not affected

pytorch 2.2.1 ryzenpytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 512 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 64 - ResNet-152pytorch: CPU - 16 - ResNet-152pytorch: CPU - 32 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 256 - ResNet-50pytorch: CPU - 512 - ResNet-50pytorch: CPU - 16 - ResNet-50pytorch: CPU - 64 - ResNet-50pytorch: CPU - 32 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 1 - ResNet-50abcd11.7011.4211.7911.7611.8019.4020.5420.3020.1019.8116.5548.8948.4449.1848.1948.6430.3372.7511.7811.7311.7711.6711.8719.6919.9119.6420.0120.2616.0947.4948.8348.6747.9749.0229.8172.6611.7511.7811.6211.5611.5919.9819.7920.0620.1620.0615.7748.6149.3249.7348.5248.8529.3272.2511.7411.7311.8411.7611.8819.9319.7520.1420.1820.2416.2248.3848.1947.6148.5148.3428.9671.23OpenBenchmarking.org

PyTorch

Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lbcda3691215SE +/- 0.10, N = 311.7811.7511.7411.70MIN: 9.74 / MAX: 12.5MIN: 9.7 / MAX: 12.73MIN: 9.67 / MAX: 12.77MIN: 9.54 / MAX: 12.17

PyTorch

Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lcdba3691215SE +/- 0.03, N = 311.7811.7311.7311.42MIN: 9.57 / MAX: 12.66MIN: 9.64 / MAX: 12.74MIN: 9.61 / MAX: 12.62MIN: 9.66 / MAX: 12.53

PyTorch

Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_ldabc3691215SE +/- 0.03, N = 311.8411.7911.7711.62MIN: 9.62 / MAX: 12.79MIN: 9.57 / MAX: 12.78MIN: 9.55 / MAX: 12.38MIN: 9.52 / MAX: 12.22

PyTorch

Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_ldabc3691215SE +/- 0.01, N = 311.7611.7611.6711.56MIN: 9.68 / MAX: 12.8MIN: 9.55 / MAX: 12.64MIN: 9.73 / MAX: 12.76MIN: 9.64 / MAX: 12.51

PyTorch

Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_ldbac3691215SE +/- 0.14, N = 311.8811.8711.8011.59MIN: 9.72 / MAX: 12.8MIN: 9.59 / MAX: 12.72MIN: 9.74 / MAX: 12.67MIN: 9.5 / MAX: 12.72

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-152cdba510152025SE +/- 0.08, N = 319.9819.9319.6919.40MIN: 19.59 / MAX: 20.45MIN: 17.21 / MAX: 20.37MIN: 19.19 / MAX: 20.13MIN: 18.86 / MAX: 19.68

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-152abcd510152025SE +/- 0.13, N = 320.5419.9119.7919.75MIN: 20.16 / MAX: 20.7MIN: 19.61 / MAX: 20.22MIN: 19.52 / MAX: 19.99MIN: 19.22 / MAX: 20.44

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152adcb510152025SE +/- 0.04, N = 320.3020.1420.0619.64MIN: 20 / MAX: 20.47MIN: 19.6 / MAX: 20.53MIN: 19.3 / MAX: 20.27MIN: 19.34 / MAX: 19.92

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152dcab510152025SE +/- 0.04, N = 320.1820.1620.1020.01MIN: 19.67 / MAX: 20.58MIN: 19.7 / MAX: 20.4MIN: 19.61 / MAX: 20.33MIN: 17.16 / MAX: 20.31

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152bdca510152025SE +/- 0.03, N = 320.2620.2420.0619.81MIN: 19.92 / MAX: 20.55MIN: 19.62 / MAX: 20.59MIN: 19.66 / MAX: 20.42MIN: 19.34 / MAX: 20.05

PyTorch

Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_ladbc48121620SE +/- 0.07, N = 316.5516.2216.0915.77MIN: 14.5 / MAX: 16.83MIN: 15.75 / MAX: 16.51MIN: 15.88 / MAX: 16.28MIN: 13.93 / MAX: 16.03

PyTorch

Device: CPU - Batch Size: 256 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-50acdb1122334455SE +/- 0.66, N = 348.8948.6148.3847.49MIN: 46.38 / MAX: 49.85MIN: 46.63 / MAX: 49.33MIN: 45.71 / MAX: 50.11MIN: 46.32 / MAX: 48.77

PyTorch

Device: CPU - Batch Size: 512 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-50cbad1122334455SE +/- 0.19, N = 349.3248.8348.4448.19MIN: 47.73 / MAX: 50.31MIN: 47.52 / MAX: 50.16MIN: 46.94 / MAX: 49.13MIN: 37.3 / MAX: 49.6

PyTorch

Device: CPU - Batch Size: 16 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50cabd1122334455SE +/- 0.11, N = 349.7349.1848.6747.61MIN: 48.72 / MAX: 50.57MIN: 48.1 / MAX: 49.79MIN: 46.88 / MAX: 49.75MIN: 45.13 / MAX: 48.9

PyTorch

Device: CPU - Batch Size: 64 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50cdab1122334455SE +/- 0.35, N = 348.5248.5148.1947.97MIN: 47.06 / MAX: 49.51MIN: 46.37 / MAX: 49.94MIN: 45.76 / MAX: 49.14MIN: 45.74 / MAX: 49.08

PyTorch

Device: CPU - Batch Size: 32 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50bcad1122334455SE +/- 0.13, N = 349.0248.8548.6448.34MIN: 47.89 / MAX: 49.85MIN: 46.2 / MAX: 49.69MIN: 47.2 / MAX: 49.77MIN: 45.85 / MAX: 49.33

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-152

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152abcd714212835SE +/- 0.11, N = 330.3329.8129.3228.96MIN: 23.35 / MAX: 30.76MIN: 28.63 / MAX: 30.21MIN: 28.93 / MAX: 29.59MIN: 22.78 / MAX: 29.7

PyTorch

Device: CPU - Batch Size: 1 - Model: ResNet-50

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50abcd1632486480SE +/- 0.34, N = 372.7572.6672.2571.23MIN: 69.82 / MAX: 74.29MIN: 67.96 / MAX: 74.36MIN: 57.14 / MAX: 74.16MIN: 64.96 / MAX: 73.24


Phoronix Test Suite v10.8.5