tri tri tri: Processor: Intel Xeon E5-2667 v3 (4 Cores / 8 Threads), Motherboard: Blade Shadow ShadowM v2.0 (1.1.3 BIOS), Chipset: Intel 82G33/G31/P35/P31 + ICH9, Memory: 1 x 12GB RAM-2400MT/s Blade R5NVNF8QVGPTY1-26C, Disk: 215GB QEMU HDD, Graphics: Red Hat QXL paravirtual graphic card 8GB, Network: Red Hat Virtio device OS: Ubuntu 22.04, Kernel: 5.15.0-113-generic (x86_64), Display Driver: NVIDIA, OpenCL: OpenCL 3.0 CUDA 12.4.89, Vulkan: 1.3.277, Compiler: GCC 11.4.0, File-System: ext4, Screen Resolution: 1280x800, System Layer: KVM AI Benchmark Alpha 0.1.2 Device AI Score Score > Higher Is Better tri . 1161 |=================================================================== AI Benchmark Alpha 0.1.2 Device Training Score Score > Higher Is Better tri . 611 |==================================================================== AI Benchmark Alpha 0.1.2 Device Inference Score Score > Higher Is Better tri . 550 |==================================================================== TensorFlow 2.16.1 Device: GPU - Batch Size: 16 - Model: ResNet-50 images/sec > Higher Is Better tri . 2.56 |=================================================================== TensorFlow 2.16.1 Device: GPU - Batch Size: 16 - Model: GoogLeNet images/sec > Higher Is Better tri . 9.27 |=================================================================== TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 images/sec > Higher Is Better tri . 6.26 |=================================================================== TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: GoogLeNet images/sec > Higher Is Better tri . 18.33 |================================================================== TensorFlow 2.16.1 Device: GPU - Batch Size: 16 - Model: AlexNet images/sec > Higher Is Better tri . 9.02 |=================================================================== TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: AlexNet images/sec > Higher Is Better tri . 33.26 |================================================================== TensorFlow 2.16.1 Device: GPU - Batch Size: 16 - Model: VGG-16 images/sec > Higher Is Better tri . 0.88 |=================================================================== TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: VGG-16 images/sec > Higher Is Better tri . 2.47 |=================================================================== PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l batches/sec > Higher Is Better tri . 3.08 |=================================================================== PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-152 batches/sec > Higher Is Better tri . 4.59 |=================================================================== PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 batches/sec > Higher Is Better tri . 11.16 |==================================================================