m7g.8xlarge amazon testing on Ubuntu 22.04 via the Phoronix Test Suite. m7g.8xlarge: Processor: ARMv8 Neoverse-V1 (32 Cores), Motherboard: Amazon EC2 m7g.8xlarge (1.0 BIOS), Chipset: Amazon Device 0200, Memory: 128GB, Disk: 537GB Amazon Elastic Block Store, Network: Amazon Elastic OS: Ubuntu 22.04, Kernel: 6.5.0-1017-aws (aarch64), Vulkan: 1.3.255, Compiler: GCC 11.4.0, File-System: ext4, System Layer: amazon Whisper.cpp 1.6.2 Model: ggml-medium.en - Input: 2016 State of the Union Seconds < Lower Is Better m7g.8xlarge . 439.61 |========================================================= Whisper.cpp 1.6.2 Model: ggml-base.en - Input: 2016 State of the Union Seconds < Lower Is Better m7g.8xlarge . 81.61 |========================================================== OpenCV 4.7 Test: Stitching ms < Lower Is Better m7g.8xlarge . 284480 |========================================================= Whisper.cpp 1.6.2 Model: ggml-small.en - Input: 2016 State of the Union Seconds < Lower Is Better m7g.8xlarge . 179.73 |========================================================= OpenCV 4.7 Test: Graph API ms < Lower Is Better OpenCV 4.7 Test: DNN - Deep Neural Network ms < Lower Is Better m7g.8xlarge . 23459 |========================================================== OpenCV 4.7 Test: Image Processing ms < Lower Is Better m7g.8xlarge . 105292 |========================================================= oneDNN 3.4 Harness: Recurrent Neural Network Training - Engine: CPU ms < Lower Is Better m7g.8xlarge . 7798.29 |======================================================== OpenCV 4.7 Test: Core ms < Lower Is Better m7g.8xlarge . 96964 |========================================================== oneDNN 3.4 Harness: Recurrent Neural Network Inference - Engine: CPU ms < Lower Is Better m7g.8xlarge . 3943.27 |======================================================== OpenVINO 2024.0 Model: Face Detection FP16-INT8 - Device: CPU ms < Lower Is Better m7g.8xlarge . 3042.17 |======================================================== OpenVINO 2024.0 Model: Face Detection FP16-INT8 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 2.58 |=========================================================== OpenVINO 2024.0 Model: Face Detection FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 2151.54 |======================================================== OpenVINO 2024.0 Model: Face Detection FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 3.68 |=========================================================== ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 159.76 |========================================================= ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 6.26020 |======================================================== ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 173.47 |========================================================= ONNX Runtime 1.17 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 5.76448 |======================================================== OpenVINO 2024.0 Model: Person Detection FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 377.31 |========================================================= OpenVINO 2024.0 Model: Person Detection FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 21.17 |========================================================== OpenVINO 2024.0 Model: Road Segmentation ADAS FP16-INT8 - Device: CPU ms < Lower Is Better m7g.8xlarge . 492.91 |========================================================= OpenVINO 2024.0 Model: Road Segmentation ADAS FP16-INT8 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 16.21 |========================================================== OpenVINO 2024.0 Model: Person Detection FP32 - Device: CPU ms < Lower Is Better m7g.8xlarge . 376.80 |========================================================= OpenVINO 2024.0 Model: Person Detection FP32 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 21.20 |========================================================== OpenVINO 2024.0 Model: Machine Translation EN To DE FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 170.48 |========================================================= OpenVINO 2024.0 Model: Machine Translation EN To DE FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 46.87 |========================================================== ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 879.88 |========================================================= ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 1.13658 |======================================================== ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 704.10 |========================================================= ONNX Runtime 1.17 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 1.42024 |======================================================== ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 4.61260 |======================================================== ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 216.38 |========================================================= ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 6.91744 |======================================================== ONNX Runtime 1.17 Model: GPT-2 - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 144.42 |========================================================= OpenVINO 2024.0 Model: Noise Suppression Poconet-Like FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 113.16 |========================================================= OpenVINO 2024.0 Model: Noise Suppression Poconet-Like FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 70.67 |========================================================== ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 217.82 |========================================================= ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 4.59152 |======================================================== ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 54.23 |========================================================== ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 18.44 |========================================================== ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 111.42 |========================================================= ONNX Runtime 1.17 Model: bertsquad-12 - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 8.97560 |======================================================== ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 112.96 |========================================================= ONNX Runtime 1.17 Model: yolov4 - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 8.85209 |======================================================== OpenVINO 2024.0 Model: Handwritten English Recognition FP16-INT8 - Device: CPU ms < Lower Is Better m7g.8xlarge . 201.65 |========================================================= OpenVINO 2024.0 Model: Handwritten English Recognition FP16-INT8 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 39.62 |========================================================== OpenVINO 2024.0 Model: Vehicle Detection FP16-INT8 - Device: CPU ms < Lower Is Better m7g.8xlarge . 154.86 |========================================================= OpenVINO 2024.0 Model: Vehicle Detection FP16-INT8 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 51.63 |========================================================== ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 2.83110 |======================================================== ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 352.80 |========================================================= OpenVINO 2024.0 Model: Person Vehicle Bike Detection FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 25.39 |========================================================== OpenVINO 2024.0 Model: Person Vehicle Bike Detection FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 314.92 |========================================================= OpenVINO 2024.0 Model: Road Segmentation ADAS FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 70.31 |========================================================== OpenVINO 2024.0 Model: Road Segmentation ADAS FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 113.70 |========================================================= OpenVINO 2024.0 Model: Handwritten English Recognition FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 185.84 |========================================================= OpenVINO 2024.0 Model: Handwritten English Recognition FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 43.01 |========================================================== ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 4.35358 |======================================================== ONNX Runtime 1.17 Model: T5 Encoder - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 229.63 |========================================================= ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 88.16 |========================================================== ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 11.34 |========================================================== ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 55.09 |========================================================== ONNX Runtime 1.17 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 18.15 |========================================================== OpenVINO 2024.0 Model: Weld Porosity Detection FP16-INT8 - Device: CPU ms < Lower Is Better m7g.8xlarge . 24.07 |========================================================== OpenVINO 2024.0 Model: Weld Porosity Detection FP16-INT8 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 332.14 |========================================================= OpenVINO 2024.0 Model: Weld Porosity Detection FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 14.70 |========================================================== OpenVINO 2024.0 Model: Weld Porosity Detection FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 543.78 |========================================================= OpenVINO 2024.0 Model: Person Re-Identification Retail FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 22.98 |========================================================== OpenVINO 2024.0 Model: Person Re-Identification Retail FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 347.81 |========================================================= OpenVINO 2024.0 Model: Face Detection Retail FP16-INT8 - Device: CPU ms < Lower Is Better m7g.8xlarge . 48.17 |========================================================== OpenVINO 2024.0 Model: Face Detection Retail FP16-INT8 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 166.02 |========================================================= OpenVINO 2024.0 Model: Vehicle Detection FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 26.78 |========================================================== OpenVINO 2024.0 Model: Vehicle Detection FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 298.31 |========================================================= OpenVINO 2024.0 Model: Face Detection Retail FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 8.84 |=========================================================== OpenVINO 2024.0 Model: Face Detection Retail FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 903.29 |========================================================= ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 1.07450 |======================================================== ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 929.21 |========================================================= OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU ms < Lower Is Better m7g.8xlarge . 2.05 |=========================================================== OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 3886.78 |======================================================== OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU ms < Lower Is Better m7g.8xlarge . 2.09 |=========================================================== OpenVINO 2024.0 Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU FPS > Higher Is Better m7g.8xlarge . 3808.13 |======================================================== ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 2.59272 |======================================================== ONNX Runtime 1.17 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 385.46 |========================================================= ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 3.92809 |======================================================== ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 254.50 |========================================================= ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 5.46672 |======================================================== ONNX Runtime 1.17 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 182.88 |========================================================= ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 12.78 |========================================================== ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Parallel Inferences Per Second > Higher Is Better m7g.8xlarge . 78.22 |========================================================== ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard Inference Time Cost (ms) < Lower Is Better m7g.8xlarge . 12.64 |========================================================== ONNX Runtime 1.17 Model: super-resolution-10 - Device: CPU - Executor: Standard Inferences Per Second > Higher Is Better m7g.8xlarge . 79.08 |========================================================== OpenCV 4.7 Test: Features 2D ms < Lower Is Better m7g.8xlarge . 54743 |========================================================== oneDNN 3.4 Harness: IP Shapes 3D - Engine: CPU ms < Lower Is Better m7g.8xlarge . 4.52619 |======================================================== OpenCV 4.7 Test: Object Detection ms < Lower Is Better m7g.8xlarge . 27261 |========================================================== Llama.cpp b3067 Model: Meta-Llama-3-8B-Instruct-Q8_0.gguf Tokens Per Second > Higher Is Better m7g.8xlarge . 22.47 |========================================================== OpenCV 4.7 Test: Video ms < Lower Is Better m7g.8xlarge . 22760 |========================================================== oneDNN 3.4 Harness: Deconvolution Batch shapes_1d - Engine: CPU ms < Lower Is Better m7g.8xlarge . 64.40 |========================================================== oneDNN 3.4 Harness: IP Shapes 1D - Engine: CPU ms < Lower Is Better m7g.8xlarge . 6.50449 |======================================================== oneDNN 3.4 Harness: Convolution Batch Shapes Auto - Engine: CPU ms < Lower Is Better m7g.8xlarge . 10.58 |========================================================== oneDNN 3.4 Harness: Deconvolution Batch shapes_3d - Engine: CPU ms < Lower Is Better m7g.8xlarge . 13.77 |==========================================================