tri tri tri: Processor: AMD EPYC 7543P 32-Core (4 Cores / 8 Threads), Motherboard: Blade Shadow ShadowM v2.0 (1.1.3 BIOS), Chipset: Intel 82G33/G31/P35/P31 + ICH9, Memory: 1 x 16GB RAM-2400MT/s Blade 2MEVPUH6DW9W57-PYL, Disk: 215GB QEMU HDD, Graphics: Red Hat QXL paravirtual graphic card 20GB, Network: Red Hat Virtio device OS: Ubuntu 22.04, Kernel: 5.15.0-113-generic (x86_64), Display Server: X Server, Display Driver: NVIDIA, OpenCL: OpenCL 3.0 CUDA 12.4.131, Vulkan: 1.3.277, Compiler: GCC 11.4.0, File-System: ext4, Screen Resolution: 1280x800, System Layer: KVM AI Benchmark Alpha 0.1.2 Device AI Score Score > Higher Is Better tri . 1530 |=================================================================== AI Benchmark Alpha 0.1.2 Device Training Score Score > Higher Is Better tri . 814 |==================================================================== AI Benchmark Alpha 0.1.2 Device Inference Score Score > Higher Is Better tri . 716 |==================================================================== TensorFlow 2.16.1 Device: GPU - Batch Size: 16 - Model: ResNet-50 images/sec > Higher Is Better tri . 3.40 |=================================================================== TensorFlow 2.16.1 Device: GPU - Batch Size: 16 - Model: GoogLeNet images/sec > Higher Is Better tri . 11.62 |================================================================== TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 images/sec > Higher Is Better tri . 8.53 |=================================================================== TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: GoogLeNet images/sec > Higher Is Better tri . 25.54 |================================================================== TensorFlow 2.16.1 Device: GPU - Batch Size: 16 - Model: AlexNet images/sec > Higher Is Better tri . 14.44 |================================================================== TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: AlexNet images/sec > Higher Is Better tri . 44.22 |================================================================== TensorFlow 2.16.1 Device: GPU - Batch Size: 16 - Model: VGG-16 images/sec > Higher Is Better tri . 1.14 |=================================================================== TensorFlow 2.16.1 Device: CPU - Batch Size: 16 - Model: VGG-16 images/sec > Higher Is Better tri . 3.25 |=================================================================== PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l batches/sec > Higher Is Better tri . 3.88 |=================================================================== PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-152 batches/sec > Higher Is Better tri . 5.76 |=================================================================== PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 batches/sec > Higher Is Better tri . 14.81 |==================================================================