m6i.8xlarge
amazon testing on Ubuntu 22.04 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2407019-NE-M6I8XLARG24&grw.
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream
Neural Magic DeepSparse
Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream
ONNX Runtime
Model: GPT-2 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: GPT-2 - Device: CPU - Executor: Standard
ONNX Runtime
Model: yolov4 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: yolov4 - Device: CPU - Executor: Standard
ONNX Runtime
Model: T5 Encoder - Device: CPU - Executor: Parallel
ONNX Runtime
Model: T5 Encoder - Device: CPU - Executor: Standard
ONNX Runtime
Model: bertsquad-12 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: bertsquad-12 - Device: CPU - Executor: Standard
ONNX Runtime
Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard
ONNX Runtime
Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: fcn-resnet101-11 - Device: CPU - Executor: Standard
ONNX Runtime
Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard
ONNX Runtime
Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard
ONNX Runtime
Model: super-resolution-10 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: super-resolution-10 - Device: CPU - Executor: Standard
ONNX Runtime
Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard
OpenCV
Test: Core
OpenCV
Test: Video
OpenCV
Test: Graph API
OpenCV
Test: Stitching
OpenCV
Test: Features 2D
OpenCV
Test: Image Processing
OpenCV
Test: Object Detection
OpenCV
Test: DNN - Deep Neural Network
Whisper.cpp
Model: ggml-base.en - Input: 2016 State of the Union
Whisper.cpp
Model: ggml-small.en - Input: 2016 State of the Union
Whisper.cpp
Model: ggml-medium.en - Input: 2016 State of the Union
Llama.cpp
Model: Meta-Llama-3-8B-Instruct-Q8_0.gguf
Mlpack Benchmark
Benchmark: scikit_ica
Mlpack Benchmark
Benchmark: scikit_qda
Mlpack Benchmark
Benchmark: scikit_svm
Mlpack Benchmark
Benchmark: scikit_linearridgeregression
oneDNN
Harness: IP Shapes 1D - Engine: CPU
oneDNN
Harness: IP Shapes 3D - Engine: CPU
oneDNN
Harness: Convolution Batch Shapes Auto - Engine: CPU
oneDNN
Harness: Deconvolution Batch shapes_1d - Engine: CPU
oneDNN
Harness: Deconvolution Batch shapes_3d - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Training - Engine: CPU
oneDNN
Harness: Recurrent Neural Network Inference - Engine: CPU
OpenVINO
Model: Face Detection FP16 - Device: CPU
OpenVINO
Model: Face Detection FP16 - Device: CPU
OpenVINO
Model: Person Detection FP16 - Device: CPU
OpenVINO
Model: Person Detection FP16 - Device: CPU
OpenVINO
Model: Person Detection FP32 - Device: CPU
OpenVINO
Model: Person Detection FP32 - Device: CPU
OpenVINO
Model: Vehicle Detection FP16 - Device: CPU
OpenVINO
Model: Vehicle Detection FP16 - Device: CPU
OpenVINO
Model: Face Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Face Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Face Detection Retail FP16 - Device: CPU
OpenVINO
Model: Face Detection Retail FP16 - Device: CPU
OpenVINO
Model: Road Segmentation ADAS FP16 - Device: CPU
OpenVINO
Model: Road Segmentation ADAS FP16 - Device: CPU
OpenVINO
Model: Vehicle Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Vehicle Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Weld Porosity Detection FP16 - Device: CPU
OpenVINO
Model: Weld Porosity Detection FP16 - Device: CPU
OpenVINO
Model: Face Detection Retail FP16-INT8 - Device: CPU
OpenVINO
Model: Face Detection Retail FP16-INT8 - Device: CPU
OpenVINO
Model: Road Segmentation ADAS FP16-INT8 - Device: CPU
OpenVINO
Model: Road Segmentation ADAS FP16-INT8 - Device: CPU
OpenVINO
Model: Machine Translation EN To DE FP16 - Device: CPU
OpenVINO
Model: Machine Translation EN To DE FP16 - Device: CPU
OpenVINO
Model: Weld Porosity Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Weld Porosity Detection FP16-INT8 - Device: CPU
OpenVINO
Model: Person Vehicle Bike Detection FP16 - Device: CPU
OpenVINO
Model: Person Vehicle Bike Detection FP16 - Device: CPU
OpenVINO
Model: Noise Suppression Poconet-Like FP16 - Device: CPU
OpenVINO
Model: Noise Suppression Poconet-Like FP16 - Device: CPU
OpenVINO
Model: Handwritten English Recognition FP16 - Device: CPU
OpenVINO
Model: Handwritten English Recognition FP16 - Device: CPU
OpenVINO
Model: Person Re-Identification Retail FP16 - Device: CPU
OpenVINO
Model: Person Re-Identification Retail FP16 - Device: CPU
OpenVINO
Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU
OpenVINO
Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU
OpenVINO
Model: Handwritten English Recognition FP16-INT8 - Device: CPU
OpenVINO
Model: Handwritten English Recognition FP16-INT8 - Device: CPU
OpenVINO
Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU
OpenVINO
Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU
ONNX Runtime
Model: GPT-2 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: GPT-2 - Device: CPU - Executor: Standard
ONNX Runtime
Model: yolov4 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: yolov4 - Device: CPU - Executor: Standard
ONNX Runtime
Model: T5 Encoder - Device: CPU - Executor: Parallel
ONNX Runtime
Model: T5 Encoder - Device: CPU - Executor: Standard
ONNX Runtime
Model: bertsquad-12 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: bertsquad-12 - Device: CPU - Executor: Standard
ONNX Runtime
Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard
ONNX Runtime
Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: fcn-resnet101-11 - Device: CPU - Executor: Standard
ONNX Runtime
Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard
ONNX Runtime
Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard
ONNX Runtime
Model: super-resolution-10 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: super-resolution-10 - Device: CPU - Executor: Standard
ONNX Runtime
Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel
ONNX Runtime
Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard
Phoronix Test Suite v10.8.5