m6i.8xlarge

amazon testing on Ubuntu 22.04 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2407019-NE-M6I8XLARG24&grw.

m6i.8xlargeProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelVulkanCompilerFile-SystemScreen ResolutionSystem Layerm6i.8xlargeIntel Xeon Platinum 8375C (16 Cores / 32 Threads)Amazon EC2 m6i.8xlarge (1.0 BIOS)Intel 440FX 82441FX PMC1 x 128 GB DDR4-3200MT/s537GB Amazon Elastic Block StoreEFI VGAAmazon ElasticUbuntu 22.046.5.0-1017-aws (x86_64)1.3.255GCC 11.4.0ext4800x600amazonOpenBenchmarking.org- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-XeT9lY/gcc-11-11.4.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - CPU Microcode: 0xd0003d1- gather_data_sampling: Unknown: Dependent on hypervisor status + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT Host state unknown + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Not affected + tsx_async_abort: Not affected

m6i.8xlargedeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Asynchronous Multi-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Baseline - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: ResNet-50, Sparse INT8 - Synchronous Single-Streamdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamdeepsparse: Llama2 Chat 7b Quantized - Asynchronous Multi-Streamdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamdeepsparse: Llama2 Chat 7b Quantized - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Asynchronous Multi-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: BERT-Large, NLP Question Answering, Sparse INT8 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamonnx: GPT-2 - CPU - Parallelonnx: GPT-2 - CPU - Standardonnx: yolov4 - CPU - Parallelonnx: yolov4 - CPU - Standardonnx: T5 Encoder - CPU - Parallelonnx: T5 Encoder - CPU - Standardonnx: bertsquad-12 - CPU - Parallelonnx: bertsquad-12 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardopencv: Coreopencv: Videoopencv: Graph APIopencv: Stitchingopencv: Features 2Dopencv: Image Processingopencv: Object Detectionopencv: DNN - Deep Neural Networkwhisper-cpp: ggml-base.en - 2016 State of the Unionwhisper-cpp: ggml-small.en - 2016 State of the Unionwhisper-cpp: ggml-medium.en - 2016 State of the Unionllama-cpp: Meta-Llama-3-8B-Instruct-Q8_0.ggufmlpack: scikit_icamlpack: scikit_qdamlpack: scikit_svmmlpack: scikit_linearridgeregressiononednn: IP Shapes 1D - CPUonednn: IP Shapes 3D - CPUonednn: Convolution Batch Shapes Auto - CPUonednn: Deconvolution Batch shapes_1d - CPUonednn: Deconvolution Batch shapes_3d - CPUonednn: Recurrent Neural Network Training - CPUonednn: Recurrent Neural Network Inference - CPUopenvino: Face Detection FP16 - CPUopenvino: Face Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP16 - CPUopenvino: Person Detection FP32 - CPUopenvino: Person Detection FP32 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Vehicle Detection FP16 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection FP16-INT8 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Face Detection Retail FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Road Segmentation ADAS FP16 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Vehicle Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Weld Porosity Detection FP16 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Face Detection Retail FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Road Segmentation ADAS FP16-INT8 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Machine Translation EN To DE FP16 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Weld Porosity Detection FP16-INT8 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Person Vehicle Bike Detection FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Noise Suppression Poconet-Like FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Handwritten English Recognition FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Person Re-Identification Retail FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Age Gender Recognition Retail 0013 FP16 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Handwritten English Recognition FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUopenvino: Age Gender Recognition Retail 0013 FP16-INT8 - CPUonnx: GPT-2 - CPU - Parallelonnx: GPT-2 - CPU - Standardonnx: yolov4 - CPU - Parallelonnx: yolov4 - CPU - Standardonnx: T5 Encoder - CPU - Parallelonnx: T5 Encoder - CPU - Standardonnx: bertsquad-12 - CPU - Parallelonnx: bertsquad-12 - CPU - Standardonnx: CaffeNet 12-int8 - CPU - Parallelonnx: CaffeNet 12-int8 - CPU - Standardonnx: fcn-resnet101-11 - CPU - Parallelonnx: fcn-resnet101-11 - CPU - Standardonnx: ArcFace ResNet-100 - CPU - Parallelonnx: ArcFace ResNet-100 - CPU - Standardonnx: ResNet50 v1-12-int8 - CPU - Parallelonnx: ResNet50 v1-12-int8 - CPU - Standardonnx: super-resolution-10 - CPU - Parallelonnx: super-resolution-10 - CPU - Standardonnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallelonnx: Faster R-CNN R-50-FPN-int8 - CPU - Standardm6i.8xlarge21.0124379.396019.619850.9603515.231515.5059222.36094.4889258.900930.8778185.57895.37801318.49656.0525774.46661.28672.81542734.372212.700878.7106258.914630.8763185.76915.3726122.644665.179998.570510.1359171.798846.5361121.76528.204520.4517390.945818.096955.2410242.532632.960590.718211.011320.8215382.254519.644650.8962132.959160.20711.343215.4445190.743255.15014.782623.3271554.934808.4111.747093.9224534.698944.4721287.497332.25198.6232131.78564.550044.8816110080626336248216351122727331411052860632175131.72353347.07298977.3462312.4945.7623.2014.211.821.100332.051623.134065.676272.719941559.67840.2536.861158.7552.40152.5852.39152.55348.6722.9126.28303.901268.186.28163.4548.911158.416.88679.2723.493313.294.82330.4224.1884.2694.912590.006.16570.2814.00765.4220.77276.1957.90936.3817.0517231.320.92316.1450.5836965.980.427.515836.2857388.185164.74575.241373.9161167.645642.86381.800721.23548572.447257.87028.817922.87053.477313.0086510.13868.00676219.798204.965OpenBenchmarking.org

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamm6i.8xlarge510152025SE +/- 0.14, N = 321.01

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamm6i.8xlarge80160240320400SE +/- 2.19, N = 3379.40

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamm6i.8xlarge510152025SE +/- 0.03, N = 319.62

Neural Magic DeepSparse

Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamm6i.8xlarge1122334455SE +/- 0.09, N = 350.96

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamm6i.8xlarge110220330440550SE +/- 1.93, N = 3515.23

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Asynchronous Multi-Streamm6i.8xlarge48121620SE +/- 0.06, N = 315.51

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamm6i.8xlarge50100150200250SE +/- 0.22, N = 3222.36

Neural Magic DeepSparse

Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, BERT base uncased SST2, Sparse INT8 - Scenario: Synchronous Single-Streamm6i.8xlarge1.012.023.034.045.05SE +/- 0.0044, N = 34.4889

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamm6i.8xlarge60120180240300SE +/- 0.73, N = 3258.90

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Asynchronous Multi-Streamm6i.8xlarge714212835SE +/- 0.09, N = 330.88

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamm6i.8xlarge4080120160200SE +/- 0.20, N = 3185.58

Neural Magic DeepSparse

Model: ResNet-50, Baseline - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Baseline - Scenario: Synchronous Single-Streamm6i.8xlarge1.21012.42023.63034.84046.0505SE +/- 0.0055, N = 35.3780

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamm6i.8xlarge30060090012001500SE +/- 14.16, N = 41318.50

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Asynchronous Multi-Streamm6i.8xlarge246810SE +/- 0.0648, N = 46.0525

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamm6i.8xlarge170340510680850SE +/- 9.92, N = 3774.47

Neural Magic DeepSparse

Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: ResNet-50, Sparse INT8 - Scenario: Synchronous Single-Streamm6i.8xlarge0.28950.5790.86851.1581.4475SE +/- 0.0166, N = 31.2867

Neural Magic DeepSparse

Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamm6i.8xlarge0.63351.2671.90052.5343.1675SE +/- 0.0093, N = 32.8154

Neural Magic DeepSparse

Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Asynchronous Multi-Streamm6i.8xlarge6001200180024003000SE +/- 9.22, N = 32734.37

Neural Magic DeepSparse

Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamm6i.8xlarge3691215SE +/- 0.03, N = 312.70

Neural Magic DeepSparse

Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: Llama2 Chat 7b Quantized - Scenario: Synchronous Single-Streamm6i.8xlarge20406080100SE +/- 0.16, N = 378.71

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamm6i.8xlarge60120180240300SE +/- 0.39, N = 3258.91

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamm6i.8xlarge714212835SE +/- 0.05, N = 330.88

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamm6i.8xlarge4080120160200SE +/- 0.82, N = 3185.77

Neural Magic DeepSparse

Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamm6i.8xlarge1.20882.41763.62644.83526.044SE +/- 0.0236, N = 35.3726

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamm6i.8xlarge306090120150SE +/- 0.40, N = 3122.64

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Asynchronous Multi-Streamm6i.8xlarge1530456075SE +/- 0.23, N = 365.18

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamm6i.8xlarge20406080100SE +/- 0.25, N = 398.57

Neural Magic DeepSparse

Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Detection, YOLOv5s COCO, Sparse INT8 - Scenario: Synchronous Single-Streamm6i.8xlarge3691215SE +/- 0.03, N = 310.14

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamm6i.8xlarge4080120160200SE +/- 0.29, N = 3171.80

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamm6i.8xlarge1122334455SE +/- 0.08, N = 346.54

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamm6i.8xlarge306090120150SE +/- 0.09, N = 3121.77

Neural Magic DeepSparse

Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamm6i.8xlarge246810SE +/- 0.0064, N = 38.2045

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamm6i.8xlarge510152025SE +/- 0.09, N = 320.45

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamm6i.8xlarge80160240320400SE +/- 1.84, N = 3390.95

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamm6i.8xlarge48121620SE +/- 0.05, N = 318.10

Neural Magic DeepSparse

Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamm6i.8xlarge1224364860SE +/- 0.15, N = 355.24

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamm6i.8xlarge50100150200250SE +/- 0.42, N = 3242.53

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Asynchronous Multi-Streamm6i.8xlarge816243240SE +/- 0.06, N = 332.96

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamm6i.8xlarge20406080100SE +/- 0.70, N = 390.72

Neural Magic DeepSparse

Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: BERT-Large, NLP Question Answering, Sparse INT8 - Scenario: Synchronous Single-Streamm6i.8xlarge3691215SE +/- 0.08, N = 311.01

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamm6i.8xlarge510152025SE +/- 0.12, N = 320.82

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamm6i.8xlarge80160240320400SE +/- 2.09, N = 3382.25

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamm6i.8xlarge510152025SE +/- 0.03, N = 319.64

Neural Magic DeepSparse

Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Stream

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.7Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamm6i.8xlarge1122334455SE +/- 0.09, N = 350.90

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelm6i.8xlarge306090120150SE +/- 0.18, N = 3132.961. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardm6i.8xlarge4080120160200SE +/- 3.88, N = 15160.211. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: yolov4 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelm6i.8xlarge3691215SE +/- 0.15, N = 311.341. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: yolov4 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardm6i.8xlarge48121620SE +/- 0.06, N = 315.441. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: T5 Encoder - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelm6i.8xlarge4080120160200SE +/- 0.37, N = 3190.741. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: T5 Encoder - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardm6i.8xlarge60120180240300SE +/- 0.17, N = 3255.151. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelm6i.8xlarge48121620SE +/- 0.04, N = 314.781. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardm6i.8xlarge612182430SE +/- 0.01, N = 323.331. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallelm6i.8xlarge120240360480600SE +/- 3.61, N = 3554.931. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardm6i.8xlarge2004006008001000SE +/- 6.84, N = 3808.411. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelm6i.8xlarge0.39310.78621.17931.57241.9655SE +/- 0.01353, N = 31.747091. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardm6i.8xlarge0.88261.76522.64783.53044.413SE +/- 0.10745, N = 123.922451. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelm6i.8xlarge816243240SE +/- 0.05, N = 334.701. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardm6i.8xlarge1020304050SE +/- 1.44, N = 1544.471. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallelm6i.8xlarge60120180240300SE +/- 1.35, N = 3287.501. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardm6i.8xlarge70140210280350SE +/- 2.96, N = 3332.251. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelm6i.8xlarge20406080100SE +/- 0.24, N = 398.621. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardm6i.8xlarge306090120150SE +/- 8.01, N = 15131.791. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelm6i.8xlarge1.02382.04763.07144.09525.119SE +/- 0.03216, N = 34.550041. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInferences Per Second, More Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardm6i.8xlarge1.09842.19683.29524.39365.492SE +/- 0.03841, N = 104.881611. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

OpenCV

Test: Core

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Corem6i.8xlarge20K40K60K80K100KSE +/- 908.75, N = 71008061. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Video

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Videom6i.8xlarge6K12K18K24K30KSE +/- 359.32, N = 15263361. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Graph API

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Graph APIm6i.8xlarge50K100K150K200K250KSE +/- 1887.19, N = 32482161. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Stitching

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Stitchingm6i.8xlarge80K160K240K320K400KSE +/- 735.89, N = 33511221. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Features 2D

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Features 2Dm6i.8xlarge16K32K48K64K80KSE +/- 1561.80, N = 12727331. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Image Processing

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Image Processingm6i.8xlarge30K60K90K120K150KSE +/- 8243.47, N = 121411051. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: Object Detection

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: Object Detectionm6i.8xlarge6K12K18K24K30KSE +/- 455.65, N = 15286061. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

OpenCV

Test: DNN - Deep Neural Network

OpenBenchmarking.orgms, Fewer Is BetterOpenCV 4.7Test: DNN - Deep Neural Networkm6i.8xlarge7K14K21K28K35KSE +/- 1031.80, N = 15321751. (CXX) g++ options: -fsigned-char -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -O3 -ldl -lm -lpthread -lrt

Whisper.cpp

Model: ggml-base.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-base.en - Input: 2016 State of the Unionm6i.8xlarge306090120150SE +/- 0.25, N = 3131.721. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -msse3 -mssse3 -mavx -mf16c -mfma -mavx2 -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw -mavx512vbmi -mavx512vnni

Whisper.cpp

Model: ggml-small.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-small.en - Input: 2016 State of the Unionm6i.8xlarge80160240320400SE +/- 1.05, N = 3347.071. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -msse3 -mssse3 -mavx -mf16c -mfma -mavx2 -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw -mavx512vbmi -mavx512vnni

Whisper.cpp

Model: ggml-medium.en - Input: 2016 State of the Union

OpenBenchmarking.orgSeconds, Fewer Is BetterWhisper.cpp 1.6.2Model: ggml-medium.en - Input: 2016 State of the Unionm6i.8xlarge2004006008001000SE +/- 3.26, N = 3977.351. (CXX) g++ options: -O3 -std=c++11 -fPIC -pthread -msse3 -mssse3 -mavx -mf16c -mfma -mavx2 -mavx512f -mavx512cd -mavx512vl -mavx512dq -mavx512bw -mavx512vbmi -mavx512vnni

Llama.cpp

Model: Meta-Llama-3-8B-Instruct-Q8_0.gguf

OpenBenchmarking.orgTokens Per Second, More Is BetterLlama.cpp b3067Model: Meta-Llama-3-8B-Instruct-Q8_0.ggufm6i.8xlarge3691215SE +/- 0.03, N = 312.491. (CXX) g++ options: -std=c++11 -fPIC -O3 -pthread -march=native -mtune=native -lopenblas

Mlpack Benchmark

Benchmark: scikit_ica

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_icam6i.8xlarge1020304050SE +/- 0.17, N = 345.76

Mlpack Benchmark

Benchmark: scikit_qda

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_qdam6i.8xlarge612182430SE +/- 0.11, N = 323.20

Mlpack Benchmark

Benchmark: scikit_svm

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_svmm6i.8xlarge48121620SE +/- 0.12, N = 314.21

Mlpack Benchmark

Benchmark: scikit_linearridgeregression

OpenBenchmarking.orgSeconds, Fewer Is BetterMlpack BenchmarkBenchmark: scikit_linearridgeregressionm6i.8xlarge0.40950.8191.22851.6382.0475SE +/- 0.02, N = 151.82

oneDNN

Harness: IP Shapes 1D - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 1D - Engine: CPUm6i.8xlarge0.24760.49520.74280.99041.238SE +/- 0.00796, N = 31.10033MIN: 1.051. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

oneDNN

Harness: IP Shapes 3D - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: IP Shapes 3D - Engine: CPUm6i.8xlarge0.46160.92321.38481.84642.308SE +/- 0.01078, N = 32.05162MIN: 1.941. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

oneDNN

Harness: Convolution Batch Shapes Auto - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Convolution Batch Shapes Auto - Engine: CPUm6i.8xlarge0.70521.41042.11562.82083.526SE +/- 0.02523, N = 33.13406MIN: 2.941. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

oneDNN

Harness: Deconvolution Batch shapes_1d - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_1d - Engine: CPUm6i.8xlarge1.27722.55443.83165.10886.386SE +/- 0.10277, N = 125.67627MIN: 3.731. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

oneDNN

Harness: Deconvolution Batch shapes_3d - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Deconvolution Batch shapes_3d - Engine: CPUm6i.8xlarge0.6121.2241.8362.4483.06SE +/- 0.00998, N = 32.71994MIN: 2.651. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

oneDNN

Harness: Recurrent Neural Network Training - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Training - Engine: CPUm6i.8xlarge30060090012001500SE +/- 12.73, N = 31559.67MIN: 1524.441. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

oneDNN

Harness: Recurrent Neural Network Inference - Engine: CPU

OpenBenchmarking.orgms, Fewer Is BetteroneDNN 3.4Harness: Recurrent Neural Network Inference - Engine: CPUm6i.8xlarge2004006008001000SE +/- 5.76, N = 3840.25MIN: 821.741. (CXX) g++ options: -O3 -march=native -fopenmp -msse4.1 -fPIC -pie -ldl

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUm6i.8xlarge246810SE +/- 0.01, N = 36.861. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16 - Device: CPUm6i.8xlarge2004006008001000SE +/- 0.61, N = 31158.75MIN: 919.07 / MAX: 1214.611. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUm6i.8xlarge1224364860SE +/- 0.36, N = 352.401. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP16 - Device: CPUm6i.8xlarge306090120150SE +/- 1.06, N = 3152.58MIN: 129.87 / MAX: 197.851. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUm6i.8xlarge1224364860SE +/- 0.49, N = 352.391. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Detection FP32 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Detection FP32 - Device: CPUm6i.8xlarge306090120150SE +/- 1.46, N = 3152.55MIN: 123.36 / MAX: 187.221. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUm6i.8xlarge80160240320400SE +/- 1.79, N = 3348.671. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16 - Device: CPUm6i.8xlarge510152025SE +/- 0.12, N = 322.91MIN: 18.6 / MAX: 53.241. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUm6i.8xlarge612182430SE +/- 0.03, N = 326.281. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection FP16-INT8 - Device: CPUm6i.8xlarge70140210280350SE +/- 0.36, N = 3303.90MIN: 178.98 / MAX: 408.861. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUm6i.8xlarge30060090012001500SE +/- 5.39, N = 31268.181. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16 - Device: CPUm6i.8xlarge246810SE +/- 0.03, N = 36.28MIN: 3.47 / MAX: 34.221. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUm6i.8xlarge4080120160200SE +/- 0.96, N = 3163.451. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16 - Device: CPUm6i.8xlarge1122334455SE +/- 0.29, N = 348.91MIN: 23.38 / MAX: 79.331. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUm6i.8xlarge2004006008001000SE +/- 3.62, N = 31158.411. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Vehicle Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Vehicle Detection FP16-INT8 - Device: CPUm6i.8xlarge246810SE +/- 0.02, N = 36.88MIN: 3.83 / MAX: 24.631. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUm6i.8xlarge150300450600750SE +/- 1.46, N = 3679.271. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16 - Device: CPUm6i.8xlarge612182430SE +/- 0.05, N = 323.49MIN: 12.99 / MAX: 51.031. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUm6i.8xlarge7001400210028003500SE +/- 19.81, N = 33313.291. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Face Detection Retail FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Face Detection Retail FP16-INT8 - Device: CPUm6i.8xlarge1.08452.1693.25354.3385.4225SE +/- 0.03, N = 34.82MIN: 2.97 / MAX: 22.791. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUm6i.8xlarge70140210280350SE +/- 0.68, N = 3330.421. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Road Segmentation ADAS FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Road Segmentation ADAS FP16-INT8 - Device: CPUm6i.8xlarge612182430SE +/- 0.05, N = 324.18MIN: 22.15 / MAX: 43.981. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUm6i.8xlarge20406080100SE +/- 0.43, N = 384.261. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Machine Translation EN To DE FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Machine Translation EN To DE FP16 - Device: CPUm6i.8xlarge20406080100SE +/- 0.48, N = 394.91MIN: 86.51 / MAX: 122.641. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUm6i.8xlarge6001200180024003000SE +/- 9.23, N = 32590.001. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Weld Porosity Detection FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Weld Porosity Detection FP16-INT8 - Device: CPUm6i.8xlarge246810SE +/- 0.02, N = 36.16MIN: 3.72 / MAX: 24.311. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Vehicle Bike Detection FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUm6i.8xlarge120240360480600SE +/- 0.59, N = 3570.281. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Vehicle Bike Detection FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Vehicle Bike Detection FP16 - Device: CPUm6i.8xlarge48121620SE +/- 0.02, N = 314.00MIN: 7.62 / MAX: 41.211. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Noise Suppression Poconet-Like FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUm6i.8xlarge170340510680850SE +/- 3.65, N = 3765.421. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Noise Suppression Poconet-Like FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Noise Suppression Poconet-Like FP16 - Device: CPUm6i.8xlarge510152025SE +/- 0.10, N = 320.77MIN: 12.95 / MAX: 48.181. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUm6i.8xlarge60120180240300SE +/- 1.23, N = 3276.191. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16 - Device: CPUm6i.8xlarge1326395265SE +/- 0.26, N = 357.90MIN: 31.1 / MAX: 88.31. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Re-Identification Retail FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUm6i.8xlarge2004006008001000SE +/- 6.81, N = 3936.381. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Person Re-Identification Retail FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Person Re-Identification Retail FP16 - Device: CPUm6i.8xlarge48121620SE +/- 0.12, N = 317.05MIN: 8.92 / MAX: 45.41. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUm6i.8xlarge4K8K12K16K20KSE +/- 142.83, N = 317231.321. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16 - Device: CPUm6i.8xlarge0.2070.4140.6210.8281.035SE +/- 0.01, N = 30.92MIN: 0.58 / MAX: 18.561. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUm6i.8xlarge70140210280350SE +/- 1.30, N = 3316.141. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Handwritten English Recognition FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Handwritten English Recognition FP16-INT8 - Device: CPUm6i.8xlarge1122334455SE +/- 0.21, N = 350.58MIN: 28.69 / MAX: 78.331. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgFPS, More Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUm6i.8xlarge8K16K24K32K40KSE +/- 174.23, N = 336965.981. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

OpenVINO

Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPU

OpenBenchmarking.orgms, Fewer Is BetterOpenVINO 2024.0Model: Age Gender Recognition Retail 0013 FP16-INT8 - Device: CPUm6i.8xlarge0.09450.1890.28350.3780.4725SE +/- 0.00, N = 30.42MIN: 0.25 / MAX: 17.811. (CXX) g++ options: -fPIC -fsigned-char -ffunction-sections -fdata-sections -O3 -fno-strict-overflow -fwrapv -shared -ldl

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Parallelm6i.8xlarge246810SE +/- 0.01027, N = 37.515831. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: GPT-2 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: GPT-2 - Device: CPU - Executor: Standardm6i.8xlarge246810SE +/- 0.15533, N = 156.285731. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: yolov4 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Parallelm6i.8xlarge20406080100SE +/- 1.15, N = 388.191. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: yolov4 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: yolov4 - Device: CPU - Executor: Standardm6i.8xlarge1428425670SE +/- 0.24, N = 364.751. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: T5 Encoder - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Parallelm6i.8xlarge1.17932.35863.53794.71725.8965SE +/- 0.01018, N = 35.241371. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: T5 Encoder - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: T5 Encoder - Device: CPU - Executor: Standardm6i.8xlarge0.88111.76222.64333.52444.4055SE +/- 0.00257, N = 33.916111. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Parallelm6i.8xlarge1530456075SE +/- 0.17, N = 367.651. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: bertsquad-12 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: bertsquad-12 - Device: CPU - Executor: Standardm6i.8xlarge1020304050SE +/- 0.02, N = 342.861. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallelm6i.8xlarge0.40520.81041.21561.62082.026SE +/- 0.01165, N = 31.800721. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: CaffeNet 12-int8 - Device: CPU - Executor: Standardm6i.8xlarge0.2780.5560.8341.1121.39SE +/- 0.01049, N = 31.235481. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Parallelm6i.8xlarge120240360480600SE +/- 4.42, N = 3572.451. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: fcn-resnet101-11 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: fcn-resnet101-11 - Device: CPU - Executor: Standardm6i.8xlarge60120180240300SE +/- 9.73, N = 12257.871. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallelm6i.8xlarge714212835SE +/- 0.04, N = 328.821. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ArcFace ResNet-100 - Device: CPU - Executor: Standardm6i.8xlarge510152025SE +/- 0.86, N = 1522.871. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallelm6i.8xlarge0.78241.56482.34723.12963.912SE +/- 0.01640, N = 33.477311. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standardm6i.8xlarge0.67691.35382.03072.70763.3845SE +/- 0.02683, N = 33.008651. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Parallelm6i.8xlarge3691215SE +/- 0.02, N = 310.141. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: super-resolution-10 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: super-resolution-10 - Device: CPU - Executor: Standardm6i.8xlarge246810SE +/- 0.49752, N = 158.006761. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallelm6i.8xlarge50100150200250SE +/- 1.54, N = 3219.801. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt

ONNX Runtime

Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard

OpenBenchmarking.orgInference Time Cost (ms), Fewer Is BetterONNX Runtime 1.17Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standardm6i.8xlarge4080120160200SE +/- 1.68, N = 10204.971. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt


Phoronix Test Suite v10.8.5