onnx 119 AMD Ryzen Threadripper 7980X 64-Cores testing with a System76 Thelio Major (FA Z5 BIOS) and AMD Radeon Pro W7900 on Ubuntu 24.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2408227-PTS-ONNX119192&grw .
onnx 119 Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server OpenGL Compiler File-System Screen Resolution a b c d e AMD Ryzen Threadripper 7980X 64-Cores @ 7.79GHz (64 Cores / 128 Threads) System76 Thelio Major (FA Z5 BIOS) AMD Device 14a4 4 x 32GB DDR5-4800MT/s Micron MTC20F1045S1RC48BA2 1000GB CT1000T700SSD5 AMD Radeon Pro W7900 AMD Device 14cc DELL P2415Q Aquantia AQC113C NBase-T/IEEE + Realtek RTL8125 2.5GbE + Intel Wi-Fi 6E Ubuntu 24.10 6.8.0-31-generic (x86_64) GNOME Shell X Server + Wayland 4.6 Mesa 24.0.9-0ubuntu2 (LLVM 17.0.6 DRM 3.57) GCC 14.2.0 ext4 1920x1200 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2,rust --enable-libphobos-checking=release --enable-libstdcxx-backtrace --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-14-F5tscv/gcc-14-14.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-14-F5tscv/gcc-14-14.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xa108105 Python Details - Python 3.12.5 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected
onnx 119 onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: ZFNet-512 - CPU - Parallel onnx: ZFNet-512 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: ResNet101_DUC_HDC-12 - CPU - Parallel onnx: ResNet101_DUC_HDC-12 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard svt-av1: Preset 3 - Bosphorus 4K svt-av1: Preset 5 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 3 - Bosphorus 1080p svt-av1: Preset 5 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p svt-av1: Preset 3 - Beauty 4K 10-bit svt-av1: Preset 5 - Beauty 4K 10-bit svt-av1: Preset 8 - Beauty 4K 10-bit svt-av1: Preset 13 - Beauty 4K 10-bit onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: ZFNet-512 - CPU - Parallel onnx: ZFNet-512 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: ResNet101_DUC_HDC-12 - CPU - Parallel onnx: ResNet101_DUC_HDC-12 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard a b c d e 160.706 105.039 5.27246 8.76007 53.4068 81.7752 335.503 140.958 6.76854 12.6730 204.479 454.723 1.10358 3.92686 12.6039 38.3476 74.2061 201.103 131.313 100.5927 1.60987 2.68248 28.7259 44.5600 13.398 45.614 96.210 231.111 36.605 119.221 271.676 740.001 1.864 7.775 10.844 19.520 6.21628 9.51832 189.677 114.152 18.7297 12.2268 2.97938 7.09442 147.814 78.9209 4.88925 2.19841 908.296 257.990 79.3400 26.0803 13.4748 4.97187 7.61417 9.94497 621.226 372.789 34.8288 22.4415 161.407 105.791 5.12789 8.71251 54.5779 81.4158 338.928 142.114 6.86262 12.7377 200.840 460.016 1.09825 4.00404 12.4756 36.9658 74.3624 201.424 130.489 100.6830 1.59999 2.70145 28.8766 44.4566 13.350 45.343 96.423 233.248 36.553 119.229 269.879 740.790 1.857 7.801 10.827 19.417 6.18911 9.45128 195.128 114.827 18.3266 12.2939 2.94936 7.03694 145.784 78.5721 4.99490 2.17339 913.539 252.335 80.1594 27.0582 13.4482 4.96437 7.66242 9.93654 625.060 370.177 34.6450 22.4918 162.175 105.59 5.30486 9.05619 50.7421 82.4953 339.175 141.231 6.9174 13.1796 178.126 442.117 1.09469 3.43115 12.3908 38.7816 73.1208 194.343 130.766 100.876 1.61916 2.69105 27.6526 44.0419 13.53 45.662 96.06 232.396 36.664 119.768 266.006 764.003 1.867 7.811 10.852 19.396 6.15989 9.46853 188.5 110.418 19.7054 12.1186 2.9469 7.08004 144.559 75.8716 5.61236 2.26126 913.494 291.444 80.7021 25.7836 13.6746 5.14489 7.6459 9.91284 617.6 371.599 36.1605 22.7032 161.862 105.146 5.00717 8.79279 54.304 81.6673 335.859 138.164 7.10593 12.9971 212.81 419.421 1.14486 3.47069 12.6112 39.2101 73.4749 203.835 132.221 105.021 1.58526 2.66966 27.6139 45.2883 13.381 45.165 97.046 228.834 36.707 118.798 269.428 783.122 1.874 7.809 10.873 19.442 6.17185 9.50891 199.707 113.726 18.4128 12.2426 2.97608 7.23734 140.724 76.9365 4.69742 2.38355 873.467 288.124 79.2916 25.5012 13.6088 4.90503 7.5618 9.52165 630.805 374.577 36.2111 22.0783 162.245 107.723 5.11842 9.08788 54.4155 78.1552 338.703 138.605 7.02121 12.7428 210.622 440.354 1.12456 3.61108 12.845 36.68 74.3302 202.692 131.269 99.4083 1.6101 2.69413 27.7572 44.1099 13.413 45.41 96.775 228.97 36.456 119.923 268.76 749.257 1.867 7.765 10.965 19.441 6.15756 9.28112 195.366 110.033 18.3751 12.7923 2.95124 7.21415 142.422 78.4717 4.74627 2.27019 889.231 276.923 77.8483 27.2604 13.4522 4.93285 7.61659 10.0592 621.076 371.175 36.0242 22.668 OpenBenchmarking.org
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Parallel a b c d e 40 80 120 160 200 SE +/- 0.25, N = 3 SE +/- 0.37, N = 3 160.71 161.41 162.18 161.86 162.25 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Standard a b c d e 20 40 60 80 100 SE +/- 0.21, N = 3 SE +/- 0.58, N = 3 105.04 105.79 105.59 105.15 107.72 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Parallel a b c d e 1.1936 2.3872 3.5808 4.7744 5.968 SE +/- 0.03706, N = 3 SE +/- 0.03454, N = 15 5.27246 5.12789 5.30486 5.00717 5.11842 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.01899, N = 3 SE +/- 0.10839, N = 4 8.76007 8.71251 9.05619 8.79279 9.08788 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Parallel a b c d e 12 24 36 48 60 SE +/- 0.75, N = 3 SE +/- 0.73, N = 3 53.41 54.58 50.74 54.30 54.42 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Standard a b c d e 20 40 60 80 100 SE +/- 0.40, N = 3 SE +/- 0.72, N = 15 81.78 81.42 82.50 81.67 78.16 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c d e 70 140 210 280 350 SE +/- 0.69, N = 3 SE +/- 1.56, N = 3 335.50 338.93 339.18 335.86 338.70 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Standard a b c d e 30 60 90 120 150 SE +/- 0.88, N = 3 SE +/- 1.08, N = 3 140.96 142.11 141.23 138.16 138.61 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c d e 2 4 6 8 10 SE +/- 0.05485, N = 9 SE +/- 0.07644, N = 5 6.76854 6.86262 6.91740 7.10593 7.02121 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.13, N = 3 SE +/- 0.10, N = 15 12.67 12.74 13.18 13.00 12.74 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c d e 50 100 150 200 250 SE +/- 1.28, N = 3 SE +/- 3.47, N = 12 204.48 200.84 178.13 212.81 210.62 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c d e 100 200 300 400 500 SE +/- 1.43, N = 3 SE +/- 3.83, N = 3 454.72 460.02 442.12 419.42 440.35 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c d e 0.2576 0.5152 0.7728 1.0304 1.288 SE +/- 0.01462, N = 15 SE +/- 0.01709, N = 15 1.10358 1.09825 1.09469 1.14486 1.12456 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c d e 0.9009 1.8018 2.7027 3.6036 4.5045 SE +/- 0.12199, N = 15 SE +/- 0.10773, N = 15 3.92686 4.00404 3.43115 3.47069 3.61108 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c d e 3 6 9 12 15 SE +/- 0.05, N = 3 SE +/- 0.08, N = 3 12.60 12.48 12.39 12.61 12.85 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c d e 9 18 27 36 45 SE +/- 0.40, N = 3 SE +/- 0.45, N = 3 38.35 36.97 38.78 39.21 36.68 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c d e 20 40 60 80 100 SE +/- 0.25, N = 3 SE +/- 0.72, N = 3 74.21 74.36 73.12 73.47 74.33 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c d e 40 80 120 160 200 SE +/- 1.01, N = 3 SE +/- 1.52, N = 3 201.10 201.42 194.34 203.84 202.69 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c d e 30 60 90 120 150 SE +/- 0.20, N = 3 SE +/- 0.45, N = 3 131.31 130.49 130.77 132.22 131.27 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c d e 20 40 60 80 100 SE +/- 0.94, N = 6 SE +/- 1.11, N = 5 100.59 100.68 100.88 105.02 99.41 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel a b c d e 0.3643 0.7286 1.0929 1.4572 1.8215 SE +/- 0.01149, N = 3 SE +/- 0.01116, N = 3 1.60987 1.59999 1.61916 1.58526 1.61010 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard a b c d e 0.6078 1.2156 1.8234 2.4312 3.039 SE +/- 0.00331, N = 3 SE +/- 0.00886, N = 3 2.68248 2.70145 2.69105 2.66966 2.69413 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c d e 7 14 21 28 35 SE +/- 0.21, N = 11 SE +/- 0.32, N = 5 28.73 28.88 27.65 27.61 27.76 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c d e 10 20 30 40 50 SE +/- 0.33, N = 3 SE +/- 0.14, N = 3 44.56 44.46 44.04 45.29 44.11 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
SVT-AV1 Encoder Mode: Preset 3 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Bosphorus 4K a b c d e 3 6 9 12 15 SE +/- 0.02, N = 3 SE +/- 0.04, N = 3 13.40 13.35 13.53 13.38 13.41 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Bosphorus 4K a b c d e 10 20 30 40 50 SE +/- 0.18, N = 3 SE +/- 0.22, N = 3 45.61 45.34 45.66 45.17 45.41 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Bosphorus 4K a b c d e 20 40 60 80 100 SE +/- 0.26, N = 3 SE +/- 0.79, N = 3 96.21 96.42 96.06 97.05 96.78 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Bosphorus 4K a b c d e 50 100 150 200 250 SE +/- 1.99, N = 8 SE +/- 2.31, N = 3 231.11 233.25 232.40 228.83 228.97 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 3 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Bosphorus 1080p a b c d e 8 16 24 32 40 SE +/- 0.03, N = 3 SE +/- 0.01, N = 3 36.61 36.55 36.66 36.71 36.46 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Bosphorus 1080p a b c d e 30 60 90 120 150 SE +/- 0.52, N = 3 SE +/- 0.35, N = 3 119.22 119.23 119.77 118.80 119.92 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Bosphorus 1080p a b c d e 60 120 180 240 300 SE +/- 0.46, N = 3 SE +/- 0.65, N = 3 271.68 269.88 266.01 269.43 268.76 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b c d e 200 400 600 800 1000 SE +/- 7.99, N = 4 SE +/- 8.40, N = 4 740.00 740.79 764.00 783.12 749.26 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 3 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Beauty 4K 10-bit a b c d e 0.4217 0.8434 1.2651 1.6868 2.1085 SE +/- 0.002, N = 3 SE +/- 0.004, N = 3 1.864 1.857 1.867 1.874 1.867 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Beauty 4K 10-bit a b c d e 2 4 6 8 10 SE +/- 0.029, N = 3 SE +/- 0.008, N = 3 7.775 7.801 7.811 7.809 7.765 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Beauty 4K 10-bit a b c d e 3 6 9 12 15 SE +/- 0.04, N = 3 SE +/- 0.05, N = 3 10.84 10.83 10.85 10.87 10.97 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Beauty 4K 10-bit a b c d e 5 10 15 20 25 SE +/- 0.03, N = 3 SE +/- 0.04, N = 3 19.52 19.42 19.40 19.44 19.44 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Parallel a b c d e 2 4 6 8 10 SE +/- 0.00960, N = 3 SE +/- 0.01421, N = 3 6.21628 6.18911 6.15989 6.17185 6.15756 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.01924, N = 3 SE +/- 0.05188, N = 3 9.51832 9.45128 9.46853 9.50891 9.28112 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Parallel a b c d e 40 80 120 160 200 SE +/- 1.34, N = 3 SE +/- 1.30, N = 15 189.68 195.13 188.50 199.71 195.37 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Standard a b c d e 30 60 90 120 150 SE +/- 0.25, N = 3 SE +/- 1.43, N = 4 114.15 114.83 110.42 113.73 110.03 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Parallel a b c d e 5 10 15 20 25 SE +/- 0.27, N = 3 SE +/- 0.25, N = 3 18.73 18.33 19.71 18.41 18.38 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.06, N = 3 SE +/- 0.11, N = 15 12.23 12.29 12.12 12.24 12.79 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c d e 0.6704 1.3408 2.0112 2.6816 3.352 SE +/- 0.00618, N = 3 SE +/- 0.01351, N = 3 2.97938 2.94936 2.94690 2.97608 2.95124 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Standard a b c d e 2 4 6 8 10 SE +/- 0.04465, N = 3 SE +/- 0.05397, N = 3 7.09442 7.03694 7.08004 7.23734 7.21415 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c d e 30 60 90 120 150 SE +/- 1.16, N = 9 SE +/- 1.59, N = 5 147.81 145.78 144.56 140.72 142.42 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c d e 20 40 60 80 100 SE +/- 0.83, N = 3 SE +/- 0.63, N = 15 78.92 78.57 75.87 76.94 78.47 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c d e 1.2628 2.5256 3.7884 5.0512 6.314 SE +/- 0.03038, N = 3 SE +/- 0.09195, N = 12 4.88925 4.99490 5.61236 4.69742 4.74627 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c d e 0.5363 1.0726 1.6089 2.1452 2.6815 SE +/- 0.00686, N = 3 SE +/- 0.01799, N = 3 2.19841 2.17339 2.26126 2.38355 2.27019 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c d e 200 400 600 800 1000 SE +/- 11.68, N = 15 SE +/- 13.79, N = 15 908.30 913.54 913.49 873.47 889.23 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c d e 60 120 180 240 300 SE +/- 7.70, N = 15 SE +/- 6.89, N = 15 257.99 252.34 291.44 288.12 276.92 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c d e 20 40 60 80 100 SE +/- 0.34, N = 3 SE +/- 0.51, N = 3 79.34 80.16 80.70 79.29 77.85 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c d e 6 12 18 24 30 SE +/- 0.27, N = 3 SE +/- 0.33, N = 3 26.08 27.06 25.78 25.50 27.26 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c d e 4 8 12 16 20 SE +/- 0.04, N = 3 SE +/- 0.13, N = 3 13.47 13.45 13.67 13.61 13.45 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c d e 1.1576 2.3152 3.4728 4.6304 5.788 SE +/- 0.02497, N = 3 SE +/- 0.03731, N = 3 4.97187 4.96437 5.14489 4.90503 4.93285 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c d e 2 4 6 8 10 SE +/- 0.01157, N = 3 SE +/- 0.02614, N = 3 7.61417 7.66242 7.64590 7.56180 7.61659 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.08968, N = 6 SE +/- 0.10599, N = 5 9.94497 9.93654 9.91284 9.52165 10.05920 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel a b c d e 140 280 420 560 700 SE +/- 4.43, N = 3 SE +/- 4.33, N = 3 621.23 625.06 617.60 630.81 621.08 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard a b c d e 80 160 240 320 400 SE +/- 0.46, N = 3 SE +/- 1.22, N = 3 372.79 370.18 371.60 374.58 371.18 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c d e 8 16 24 32 40 SE +/- 0.26, N = 11 SE +/- 0.39, N = 5 34.83 34.65 36.16 36.21 36.02 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c d e 5 10 15 20 25 SE +/- 0.16, N = 3 SE +/- 0.07, N = 3 22.44 22.49 22.70 22.08 22.67 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
Phoronix Test Suite v10.8.5