onnx 119 AMD Ryzen Threadripper 7980X 64-Cores testing with a System76 Thelio Major (FA Z5 BIOS) and AMD Radeon Pro W7900 on Ubuntu 24.10 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2408227-PTS-ONNX119192&sro&grt .
onnx 119 Processor Motherboard Chipset Memory Disk Graphics Audio Monitor Network OS Kernel Desktop Display Server OpenGL Compiler File-System Screen Resolution a b c d e AMD Ryzen Threadripper 7980X 64-Cores @ 7.79GHz (64 Cores / 128 Threads) System76 Thelio Major (FA Z5 BIOS) AMD Device 14a4 4 x 32GB DDR5-4800MT/s Micron MTC20F1045S1RC48BA2 1000GB CT1000T700SSD5 AMD Radeon Pro W7900 AMD Device 14cc DELL P2415Q Aquantia AQC113C NBase-T/IEEE + Realtek RTL8125 2.5GbE + Intel Wi-Fi 6E Ubuntu 24.10 6.8.0-31-generic (x86_64) GNOME Shell X Server + Wayland 4.6 Mesa 24.0.9-0ubuntu2 (LLVM 17.0.6 DRM 3.57) GCC 14.2.0 ext4 1920x1200 OpenBenchmarking.org Kernel Details - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2,rust --enable-libphobos-checking=release --enable-libstdcxx-backtrace --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-14-F5tscv/gcc-14-14.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-14-F5tscv/gcc-14-14.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xa108105 Python Details - Python 3.12.5 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of Safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected
onnx 119 onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: yolov4 - CPU - Standard onnx: ZFNet-512 - CPU - Parallel onnx: ZFNet-512 - CPU - Parallel onnx: ZFNet-512 - CPU - Standard onnx: ZFNet-512 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: super-resolution-10 - CPU - Standard onnx: ResNet101_DUC_HDC-12 - CPU - Parallel onnx: ResNet101_DUC_HDC-12 - CPU - Parallel onnx: ResNet101_DUC_HDC-12 - CPU - Standard onnx: ResNet101_DUC_HDC-12 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard svt-av1: Preset 3 - Bosphorus 4K svt-av1: Preset 5 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 3 - Bosphorus 1080p svt-av1: Preset 5 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p svt-av1: Preset 3 - Beauty 4K 10-bit svt-av1: Preset 5 - Beauty 4K 10-bit svt-av1: Preset 8 - Beauty 4K 10-bit svt-av1: Preset 13 - Beauty 4K 10-bit a b c d e 160.706 6.21628 105.039 9.51832 5.27246 189.677 8.76007 114.152 53.4068 18.7297 81.7752 12.2268 335.503 2.97938 140.958 7.09442 6.76854 147.814 12.6730 78.9209 204.479 4.88925 454.723 2.19841 1.10358 908.296 3.92686 257.990 12.6039 79.3400 38.3476 26.0803 74.2061 13.4748 201.103 4.97187 131.313 7.61417 100.5927 9.94497 1.60987 621.226 2.68248 372.789 28.7259 34.8288 44.5600 22.4415 13.398 45.614 96.210 231.111 36.605 119.221 271.676 740.001 1.864 7.775 10.844 19.520 161.407 6.18911 105.791 9.45128 5.12789 195.128 8.71251 114.827 54.5779 18.3266 81.4158 12.2939 338.928 2.94936 142.114 7.03694 6.86262 145.784 12.7377 78.5721 200.840 4.99490 460.016 2.17339 1.09825 913.539 4.00404 252.335 12.4756 80.1594 36.9658 27.0582 74.3624 13.4482 201.424 4.96437 130.489 7.66242 100.6830 9.93654 1.59999 625.060 2.70145 370.177 28.8766 34.6450 44.4566 22.4918 13.350 45.343 96.423 233.248 36.553 119.229 269.879 740.790 1.857 7.801 10.827 19.417 162.175 6.15989 105.59 9.46853 5.30486 188.5 9.05619 110.418 50.7421 19.7054 82.4953 12.1186 339.175 2.9469 141.231 7.08004 6.9174 144.559 13.1796 75.8716 178.126 5.61236 442.117 2.26126 1.09469 913.494 3.43115 291.444 12.3908 80.7021 38.7816 25.7836 73.1208 13.6746 194.343 5.14489 130.766 7.6459 100.876 9.91284 1.61916 617.6 2.69105 371.599 27.6526 36.1605 44.0419 22.7032 13.53 45.662 96.06 232.396 36.664 119.768 266.006 764.003 1.867 7.811 10.852 19.396 161.862 6.17185 105.146 9.50891 5.00717 199.707 8.79279 113.726 54.304 18.4128 81.6673 12.2426 335.859 2.97608 138.164 7.23734 7.10593 140.724 12.9971 76.9365 212.81 4.69742 419.421 2.38355 1.14486 873.467 3.47069 288.124 12.6112 79.2916 39.2101 25.5012 73.4749 13.6088 203.835 4.90503 132.221 7.5618 105.021 9.52165 1.58526 630.805 2.66966 374.577 27.6139 36.2111 45.2883 22.0783 13.381 45.165 97.046 228.834 36.707 118.798 269.428 783.122 1.874 7.809 10.873 19.442 162.245 6.15756 107.723 9.28112 5.11842 195.366 9.08788 110.033 54.4155 18.3751 78.1552 12.7923 338.703 2.95124 138.605 7.21415 7.02121 142.422 12.7428 78.4717 210.622 4.74627 440.354 2.27019 1.12456 889.231 3.61108 276.923 12.845 77.8483 36.68 27.2604 74.3302 13.4522 202.692 4.93285 131.269 7.61659 99.4083 10.0592 1.6101 621.076 2.69413 371.175 27.7572 36.0242 44.1099 22.668 13.413 45.41 96.775 228.97 36.456 119.923 268.76 749.257 1.867 7.765 10.965 19.441 OpenBenchmarking.org
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Parallel a b c d e 40 80 120 160 200 SE +/- 0.25, N = 3 SE +/- 0.37, N = 3 160.71 161.41 162.18 161.86 162.25 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Parallel a b c d e 2 4 6 8 10 SE +/- 0.00960, N = 3 SE +/- 0.01421, N = 3 6.21628 6.18911 6.15989 6.17185 6.15756 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Standard a b c d e 20 40 60 80 100 SE +/- 0.21, N = 3 SE +/- 0.58, N = 3 105.04 105.79 105.59 105.15 107.72 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.01924, N = 3 SE +/- 0.05188, N = 3 9.51832 9.45128 9.46853 9.50891 9.28112 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Parallel a b c d e 1.1936 2.3872 3.5808 4.7744 5.968 SE +/- 0.03706, N = 3 SE +/- 0.03454, N = 15 5.27246 5.12789 5.30486 5.00717 5.11842 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Parallel a b c d e 40 80 120 160 200 SE +/- 1.34, N = 3 SE +/- 1.30, N = 15 189.68 195.13 188.50 199.71 195.37 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.01899, N = 3 SE +/- 0.10839, N = 4 8.76007 8.71251 9.05619 8.79279 9.08788 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Standard a b c d e 30 60 90 120 150 SE +/- 0.25, N = 3 SE +/- 1.43, N = 4 114.15 114.83 110.42 113.73 110.03 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Parallel a b c d e 12 24 36 48 60 SE +/- 0.75, N = 3 SE +/- 0.73, N = 3 53.41 54.58 50.74 54.30 54.42 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Parallel a b c d e 5 10 15 20 25 SE +/- 0.27, N = 3 SE +/- 0.25, N = 3 18.73 18.33 19.71 18.41 18.38 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Standard a b c d e 20 40 60 80 100 SE +/- 0.40, N = 3 SE +/- 0.72, N = 15 81.78 81.42 82.50 81.67 78.16 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.06, N = 3 SE +/- 0.11, N = 15 12.23 12.29 12.12 12.24 12.79 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c d e 70 140 210 280 350 SE +/- 0.69, N = 3 SE +/- 1.56, N = 3 335.50 338.93 339.18 335.86 338.70 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c d e 0.6704 1.3408 2.0112 2.6816 3.352 SE +/- 0.00618, N = 3 SE +/- 0.01351, N = 3 2.97938 2.94936 2.94690 2.97608 2.95124 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Standard a b c d e 30 60 90 120 150 SE +/- 0.88, N = 3 SE +/- 1.08, N = 3 140.96 142.11 141.23 138.16 138.61 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Standard a b c d e 2 4 6 8 10 SE +/- 0.04465, N = 3 SE +/- 0.05397, N = 3 7.09442 7.03694 7.08004 7.23734 7.21415 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c d e 2 4 6 8 10 SE +/- 0.05485, N = 9 SE +/- 0.07644, N = 5 6.76854 6.86262 6.91740 7.10593 7.02121 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c d e 30 60 90 120 150 SE +/- 1.16, N = 9 SE +/- 1.59, N = 5 147.81 145.78 144.56 140.72 142.42 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.13, N = 3 SE +/- 0.10, N = 15 12.67 12.74 13.18 13.00 12.74 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c d e 20 40 60 80 100 SE +/- 0.83, N = 3 SE +/- 0.63, N = 15 78.92 78.57 75.87 76.94 78.47 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c d e 50 100 150 200 250 SE +/- 1.28, N = 3 SE +/- 3.47, N = 12 204.48 200.84 178.13 212.81 210.62 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c d e 1.2628 2.5256 3.7884 5.0512 6.314 SE +/- 0.03038, N = 3 SE +/- 0.09195, N = 12 4.88925 4.99490 5.61236 4.69742 4.74627 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c d e 100 200 300 400 500 SE +/- 1.43, N = 3 SE +/- 3.83, N = 3 454.72 460.02 442.12 419.42 440.35 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c d e 0.5363 1.0726 1.6089 2.1452 2.6815 SE +/- 0.00686, N = 3 SE +/- 0.01799, N = 3 2.19841 2.17339 2.26126 2.38355 2.27019 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c d e 0.2576 0.5152 0.7728 1.0304 1.288 SE +/- 0.01462, N = 15 SE +/- 0.01709, N = 15 1.10358 1.09825 1.09469 1.14486 1.12456 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c d e 200 400 600 800 1000 SE +/- 11.68, N = 15 SE +/- 13.79, N = 15 908.30 913.54 913.49 873.47 889.23 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c d e 0.9009 1.8018 2.7027 3.6036 4.5045 SE +/- 0.12199, N = 15 SE +/- 0.10773, N = 15 3.92686 4.00404 3.43115 3.47069 3.61108 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c d e 60 120 180 240 300 SE +/- 7.70, N = 15 SE +/- 6.89, N = 15 257.99 252.34 291.44 288.12 276.92 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c d e 3 6 9 12 15 SE +/- 0.05, N = 3 SE +/- 0.08, N = 3 12.60 12.48 12.39 12.61 12.85 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c d e 20 40 60 80 100 SE +/- 0.34, N = 3 SE +/- 0.51, N = 3 79.34 80.16 80.70 79.29 77.85 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c d e 9 18 27 36 45 SE +/- 0.40, N = 3 SE +/- 0.45, N = 3 38.35 36.97 38.78 39.21 36.68 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c d e 6 12 18 24 30 SE +/- 0.27, N = 3 SE +/- 0.33, N = 3 26.08 27.06 25.78 25.50 27.26 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c d e 20 40 60 80 100 SE +/- 0.25, N = 3 SE +/- 0.72, N = 3 74.21 74.36 73.12 73.47 74.33 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c d e 4 8 12 16 20 SE +/- 0.04, N = 3 SE +/- 0.13, N = 3 13.47 13.45 13.67 13.61 13.45 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c d e 40 80 120 160 200 SE +/- 1.01, N = 3 SE +/- 1.52, N = 3 201.10 201.42 194.34 203.84 202.69 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c d e 1.1576 2.3152 3.4728 4.6304 5.788 SE +/- 0.02497, N = 3 SE +/- 0.03731, N = 3 4.97187 4.96437 5.14489 4.90503 4.93285 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c d e 30 60 90 120 150 SE +/- 0.20, N = 3 SE +/- 0.45, N = 3 131.31 130.49 130.77 132.22 131.27 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c d e 2 4 6 8 10 SE +/- 0.01157, N = 3 SE +/- 0.02614, N = 3 7.61417 7.66242 7.64590 7.56180 7.61659 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c d e 20 40 60 80 100 SE +/- 0.94, N = 6 SE +/- 1.11, N = 5 100.59 100.68 100.88 105.02 99.41 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c d e 3 6 9 12 15 SE +/- 0.08968, N = 6 SE +/- 0.10599, N = 5 9.94497 9.93654 9.91284 9.52165 10.05920 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel a b c d e 0.3643 0.7286 1.0929 1.4572 1.8215 SE +/- 0.01149, N = 3 SE +/- 0.01116, N = 3 1.60987 1.59999 1.61916 1.58526 1.61010 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel a b c d e 140 280 420 560 700 SE +/- 4.43, N = 3 SE +/- 4.33, N = 3 621.23 625.06 617.60 630.81 621.08 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard a b c d e 0.6078 1.2156 1.8234 2.4312 3.039 SE +/- 0.00331, N = 3 SE +/- 0.00886, N = 3 2.68248 2.70145 2.69105 2.66966 2.69413 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard a b c d e 80 160 240 320 400 SE +/- 0.46, N = 3 SE +/- 1.22, N = 3 372.79 370.18 371.60 374.58 371.18 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c d e 7 14 21 28 35 SE +/- 0.21, N = 11 SE +/- 0.32, N = 5 28.73 28.88 27.65 27.61 27.76 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c d e 8 16 24 32 40 SE +/- 0.26, N = 11 SE +/- 0.39, N = 5 34.83 34.65 36.16 36.21 36.02 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c d e 10 20 30 40 50 SE +/- 0.33, N = 3 SE +/- 0.14, N = 3 44.56 44.46 44.04 45.29 44.11 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c d e 5 10 15 20 25 SE +/- 0.16, N = 3 SE +/- 0.07, N = 3 22.44 22.49 22.70 22.08 22.67 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
SVT-AV1 Encoder Mode: Preset 3 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Bosphorus 4K a b c d e 3 6 9 12 15 SE +/- 0.02, N = 3 SE +/- 0.04, N = 3 13.40 13.35 13.53 13.38 13.41 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Bosphorus 4K a b c d e 10 20 30 40 50 SE +/- 0.18, N = 3 SE +/- 0.22, N = 3 45.61 45.34 45.66 45.17 45.41 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Bosphorus 4K a b c d e 20 40 60 80 100 SE +/- 0.26, N = 3 SE +/- 0.79, N = 3 96.21 96.42 96.06 97.05 96.78 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Bosphorus 4K a b c d e 50 100 150 200 250 SE +/- 1.99, N = 8 SE +/- 2.31, N = 3 231.11 233.25 232.40 228.83 228.97 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 3 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Bosphorus 1080p a b c d e 8 16 24 32 40 SE +/- 0.03, N = 3 SE +/- 0.01, N = 3 36.61 36.55 36.66 36.71 36.46 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Bosphorus 1080p a b c d e 30 60 90 120 150 SE +/- 0.52, N = 3 SE +/- 0.35, N = 3 119.22 119.23 119.77 118.80 119.92 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Bosphorus 1080p a b c d e 60 120 180 240 300 SE +/- 0.46, N = 3 SE +/- 0.65, N = 3 271.68 269.88 266.01 269.43 268.76 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b c d e 200 400 600 800 1000 SE +/- 7.99, N = 4 SE +/- 8.40, N = 4 740.00 740.79 764.00 783.12 749.26 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 3 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Beauty 4K 10-bit a b c d e 0.4217 0.8434 1.2651 1.6868 2.1085 SE +/- 0.002, N = 3 SE +/- 0.004, N = 3 1.864 1.857 1.867 1.874 1.867 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Beauty 4K 10-bit a b c d e 2 4 6 8 10 SE +/- 0.029, N = 3 SE +/- 0.008, N = 3 7.775 7.801 7.811 7.809 7.765 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Beauty 4K 10-bit a b c d e 3 6 9 12 15 SE +/- 0.04, N = 3 SE +/- 0.05, N = 3 10.84 10.83 10.85 10.87 10.97 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Beauty 4K 10-bit a b c d e 5 10 15 20 25 SE +/- 0.03, N = 3 SE +/- 0.04, N = 3 19.52 19.42 19.40 19.44 19.44 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
Phoronix Test Suite v10.8.5