new satty AMD Ryzen AI 9 365 testing with a ASUS Zenbook S 16 UM5606WA_UM5606WA UM5606WA v1.0 (UM5606WA.308 BIOS) and AMD Radeon 512MB on Ubuntu 24.04 via the Phoronix Test Suite.
HTML result view exported from: https://openbenchmarking.org/result/2408252-NE-NEWSATTY701 .
new satty Processor Motherboard Chipset Memory Disk Graphics Audio Network OS Kernel Desktop Display Server OpenGL Compiler File-System Screen Resolution a b c d AMD Ryzen AI 9 365 @ 4.31GHz (10 Cores / 20 Threads) ASUS Zenbook S 16 UM5606WA_UM5606WA UM5606WA v1.0 (UM5606WA.308 BIOS) AMD Device 1507 4 x 6GB LPDDR5-7500MT/s Micron MT62F1536M32D4DS-026 1024GB MTFDKBA1T0QFM-1BD1AABGB AMD Radeon 512MB AMD Rembrandt Radeon HD Audio MEDIATEK Device 7925 Ubuntu 24.04 6.10.0-phx (x86_64) GNOME Shell 46.0 X Server + Wayland 4.6 Mesa 24.3~git2407280600.a211a5~oibaf~n (git-a211a51 2024-07-28 noble-oibaf-ppa) (LLVM 17.0.6 DRM 3.57) GCC 13.2.0 ext4 2880x1800 OpenBenchmarking.org Kernel Details - amdgpu.dcdebugmask=0x600 - Transparent Huge Pages: madvise Compiler Details - --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-backtrace --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-defaulted --enable-offload-targets=nvptx-none=/build/gcc-13-uJ7kn6/gcc-13-13.2.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-13-uJ7kn6/gcc-13-13.2.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v Processor Details - Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - Platform Profile: balanced - CPU Microcode: 0xb204011 - ACPI Profile: balanced Python Details - Python 3.12.3 Security Details - gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected
new satty simdjson: Kostya simdjson: TopTweet simdjson: LargeRand simdjson: PartialTweets simdjson: DistinctUserID svt-av1: Preset 3 - Bosphorus 4K svt-av1: Preset 5 - Bosphorus 4K svt-av1: Preset 8 - Bosphorus 4K svt-av1: Preset 13 - Bosphorus 4K svt-av1: Preset 3 - Bosphorus 1080p svt-av1: Preset 5 - Bosphorus 1080p svt-av1: Preset 8 - Bosphorus 1080p svt-av1: Preset 13 - Bosphorus 1080p svt-av1: Preset 3 - Beauty 4K 10-bit svt-av1: Preset 5 - Beauty 4K 10-bit svt-av1: Preset 8 - Beauty 4K 10-bit svt-av1: Preset 13 - Beauty 4K 10-bit onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Parallel onnx: GPT-2 - CPU - Standard onnx: GPT-2 - CPU - Standard onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Parallel onnx: yolov4 - CPU - Standard onnx: yolov4 - CPU - Standard onnx: ZFNet-512 - CPU - Parallel onnx: ZFNet-512 - CPU - Parallel onnx: ZFNet-512 - CPU - Standard onnx: ZFNet-512 - CPU - Standard onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Parallel onnx: T5 Encoder - CPU - Standard onnx: T5 Encoder - CPU - Standard onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Parallel onnx: bertsquad-12 - CPU - Standard onnx: bertsquad-12 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Parallel onnx: CaffeNet 12-int8 - CPU - Standard onnx: CaffeNet 12-int8 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Parallel onnx: fcn-resnet101-11 - CPU - Standard onnx: fcn-resnet101-11 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Parallel onnx: ArcFace ResNet-100 - CPU - Standard onnx: ArcFace ResNet-100 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Parallel onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: ResNet50 v1-12-int8 - CPU - Standard onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Parallel onnx: super-resolution-10 - CPU - Standard onnx: super-resolution-10 - CPU - Standard onnx: ResNet101_DUC_HDC-12 - CPU - Parallel onnx: ResNet101_DUC_HDC-12 - CPU - Parallel onnx: ResNet101_DUC_HDC-12 - CPU - Standard onnx: ResNet101_DUC_HDC-12 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Parallel onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard onnx: Faster R-CNN R-50-FPN-int8 - CPU - Standard whisperfile: Tiny whisperfile: Small whisperfile: Medium a b c d 4.51 6.88 1.25 8.74 7.09 3.728 14.781 30.826 113.827 11.911 43.914 106.46 474.771 0.568 2.573 3.694 6.164 96.8538 10.3168 130.748 7.6417 4.36533 229.072 6.48303 154.246 42.5418 23.5033 93.206 10.7266 118.516 8.43551 166.699 5.99672 5.52731 180.913 8.60423 116.218 135.85 7.35929 565.244 1.76819 0.892606 1120.31 1.16523 858.199 11.5819 86.3383 22.927 43.6148 74.6918 13.3853 216.667 4.61373 70.1183 14.2597 80.9921 12.3454 0.465907 2146.34 0.534553 1870.72 26.2276 38.1251 39.7871 25.1311 52.71359 259.90777 754.78056 4.42 6.91 1.25 6.74 6.91 3.491 13.308 29.745 109.45 11.437 41.951 100.454 455.785 0.565 2.557 3.606 6.158 95.5885 10.4521 128.263 7.78951 4.15031 240.94 6.23528 160.374 41.976 23.8202 91.4483 10.9323 120.311 8.30904 167.567 5.96555 5.50029 181.802 8.48368 117.87 139.674 7.1579 565.483 1.76734 0.868291 1151.68 1.15557 865.312 11.7777 84.9029 22.9872 43.5 75.9022 13.1725 222.382 4.49478 69.1277 14.4642 75.8635 13.1798 0.445551 2244.4 0.533521 1874.34 26.4566 37.795 39.4192 25.3656 52.63452 261.74247 751.4815 4.41 6.94 1.25 6.59 6.9 3.796 14.881 31.636 116.143 12.089 44.658 107.482 476.223 0.573 2.63 3.708 6.135 97.0868 10.2922 127.426 7.84183 4.36559 229.058 6.92476 144.406 44.791 22.3234 91.3322 10.9462 118.211 8.45631 168.371 5.93691 5.8995 169.5 8.99805 111.131 144.829 6.90258 572.861 1.74432 0.895635 1116.52 1.22009 819.557 11.6564 85.7866 23.7636 42.0785 77.3006 12.9344 226.04 4.42207 68.938 14.5036 78.9522 12.6641 0.456424 2190.94 0.526244 1900.25 26.1799 38.1944 39.7086 25.1788 52.49648 257.37884 722.53519 4.46 7.02 1.24 6.83 7.04 3.410 12.942 29.258 112.326 11.564 42.091 101.169 460.254 0.550 2.481 3.523 6.143 94.3693 10.5900 120.741 8.27490 3.95583 252.883 5.89878 169.616 42.5568 23.4969 83.0327 12.0469 117.354 8.52036 164.449 6.07861 5.42253 184.512 7.96736 125.545 139.865 7.14811 519.453 1.92558 0.834423 1198.57 1.06101 942.938 11.1720 89.5086 19.7127 50.7730 72.5395 13.7852 193.668 5.16479 64.0751 15.6076 71.9372 13.9008 0.420335 2379.56 0.471409 2122.37 25.7982 38.7603 38.0561 26.2808 54.71240 269.17700 752.93123 OpenBenchmarking.org
simdjson Throughput Test: Kostya OpenBenchmarking.org GB/s, More Is Better simdjson 3.10 Throughput Test: Kostya a b c d 1.0148 2.0296 3.0444 4.0592 5.074 SE +/- 0.02, N = 3 4.51 4.42 4.41 4.46 1. (CXX) g++ options: -O3 -lrt
simdjson Throughput Test: TopTweet OpenBenchmarking.org GB/s, More Is Better simdjson 3.10 Throughput Test: TopTweet a b c d 2 4 6 8 10 SE +/- 0.02, N = 3 6.88 6.91 6.94 7.02 1. (CXX) g++ options: -O3 -lrt
simdjson Throughput Test: LargeRandom OpenBenchmarking.org GB/s, More Is Better simdjson 3.10 Throughput Test: LargeRandom a b c d 0.2813 0.5626 0.8439 1.1252 1.4065 SE +/- 0.00, N = 3 1.25 1.25 1.25 1.24 1. (CXX) g++ options: -O3 -lrt
simdjson Throughput Test: PartialTweets OpenBenchmarking.org GB/s, More Is Better simdjson 3.10 Throughput Test: PartialTweets a b c d 2 4 6 8 10 SE +/- 0.02, N = 3 8.74 6.74 6.59 6.83 1. (CXX) g++ options: -O3 -lrt
simdjson Throughput Test: DistinctUserID OpenBenchmarking.org GB/s, More Is Better simdjson 3.10 Throughput Test: DistinctUserID a b c d 2 4 6 8 10 SE +/- 0.08, N = 3 7.09 6.91 6.90 7.04 1. (CXX) g++ options: -O3 -lrt
SVT-AV1 Encoder Mode: Preset 3 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Bosphorus 4K a b c d 0.8541 1.7082 2.5623 3.4164 4.2705 SE +/- 0.037, N = 9 3.728 3.491 3.796 3.410 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Bosphorus 4K a b c d 4 8 12 16 20 SE +/- 0.15, N = 3 14.78 13.31 14.88 12.94 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Bosphorus 4K a b c d 7 14 21 28 35 SE +/- 0.19, N = 15 30.83 29.75 31.64 29.26 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 4K OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Bosphorus 4K a b c d 30 60 90 120 150 SE +/- 0.95, N = 3 113.83 109.45 116.14 112.33 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 3 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Bosphorus 1080p a b c d 3 6 9 12 15 SE +/- 0.05, N = 3 11.91 11.44 12.09 11.56 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Bosphorus 1080p a b c d 10 20 30 40 50 SE +/- 0.37, N = 8 43.91 41.95 44.66 42.09 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Bosphorus 1080p a b c d 20 40 60 80 100 SE +/- 0.41, N = 3 106.46 100.45 107.48 101.17 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Bosphorus 1080p OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Bosphorus 1080p a b c d 100 200 300 400 500 SE +/- 3.20, N = 3 474.77 455.79 476.22 460.25 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 3 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 3 - Input: Beauty 4K 10-bit a b c d 0.1289 0.2578 0.3867 0.5156 0.6445 SE +/- 0.004, N = 3 0.568 0.565 0.573 0.550 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 5 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 5 - Input: Beauty 4K 10-bit a b c d 0.5918 1.1836 1.7754 2.3672 2.959 SE +/- 0.016, N = 3 2.573 2.557 2.630 2.481 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 8 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 8 - Input: Beauty 4K 10-bit a b c d 0.8343 1.6686 2.5029 3.3372 4.1715 SE +/- 0.010, N = 3 3.694 3.606 3.708 3.523 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
SVT-AV1 Encoder Mode: Preset 13 - Input: Beauty 4K 10-bit OpenBenchmarking.org Frames Per Second, More Is Better SVT-AV1 2.2 Encoder Mode: Preset 13 - Input: Beauty 4K 10-bit a b c d 2 4 6 8 10 SE +/- 0.006, N = 3 6.164 6.158 6.135 6.143 1. (CXX) g++ options: -march=native -mno-avx -mavx2 -mavx512f -mavx512bw -mavx512dq
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Parallel a b c d 20 40 60 80 100 SE +/- 0.87, N = 3 96.85 95.59 97.09 94.37 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Parallel a b c d 3 6 9 12 15 SE +/- 0.10, N = 3 10.32 10.45 10.29 10.59 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Standard a b c d 30 60 90 120 150 SE +/- 0.43, N = 3 130.75 128.26 127.43 120.74 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: GPT-2 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: GPT-2 - Device: CPU - Executor: Standard a b c d 2 4 6 8 10 SE +/- 0.02926, N = 3 7.64170 7.78951 7.84183 8.27490 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Parallel a b c d 0.9823 1.9646 2.9469 3.9292 4.9115 SE +/- 0.05493, N = 3 4.36533 4.15031 4.36559 3.95583 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Parallel a b c d 60 120 180 240 300 SE +/- 3.53, N = 3 229.07 240.94 229.06 252.88 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Standard a b c d 2 4 6 8 10 SE +/- 0.04221, N = 12 6.48303 6.23528 6.92476 5.89878 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: yolov4 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: yolov4 - Device: CPU - Executor: Standard a b c d 40 80 120 160 200 SE +/- 1.19, N = 12 154.25 160.37 144.41 169.62 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Parallel a b c d 10 20 30 40 50 SE +/- 0.27, N = 3 42.54 41.98 44.79 42.56 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Parallel a b c d 6 12 18 24 30 SE +/- 0.15, N = 3 23.50 23.82 22.32 23.50 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Standard a b c d 20 40 60 80 100 SE +/- 0.57, N = 12 93.21 91.45 91.33 83.03 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ZFNet-512 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ZFNet-512 - Device: CPU - Executor: Standard a b c d 3 6 9 12 15 SE +/- 0.08, N = 12 10.73 10.93 10.95 12.05 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c d 30 60 90 120 150 SE +/- 1.16, N = 3 118.52 120.31 118.21 117.35 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Parallel a b c d 2 4 6 8 10 SE +/- 0.08432, N = 3 8.43551 8.30904 8.45631 8.52036 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Standard a b c d 40 80 120 160 200 SE +/- 0.63, N = 3 166.70 167.57 168.37 164.45 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: T5 Encoder - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: T5 Encoder - Device: CPU - Executor: Standard a b c d 2 4 6 8 10 SE +/- 0.02319, N = 3 5.99672 5.96555 5.93691 6.07861 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c d 1.3274 2.6548 3.9822 5.3096 6.637 SE +/- 0.03573, N = 14 5.52731 5.50029 5.89950 5.42253 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Parallel a b c d 40 80 120 160 200 SE +/- 1.19, N = 14 180.91 181.80 169.50 184.51 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c d 3 6 9 12 15 SE +/- 0.09828, N = 3 8.60423 8.48368 8.99805 7.96736 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: bertsquad-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: bertsquad-12 - Device: CPU - Executor: Standard a b c d 30 60 90 120 150 SE +/- 1.55, N = 3 116.22 117.87 111.13 125.55 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c d 30 60 90 120 150 SE +/- 0.82, N = 3 135.85 139.67 144.83 139.87 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Parallel a b c d 2 4 6 8 10 SE +/- 0.04235, N = 3 7.35929 7.15790 6.90258 7.14811 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c d 120 240 360 480 600 SE +/- 4.51, N = 12 565.24 565.48 572.86 519.45 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: CaffeNet 12-int8 - Device: CPU - Executor: Standard a b c d 0.4333 0.8666 1.2999 1.7332 2.1665 SE +/- 0.01672, N = 12 1.76819 1.76734 1.74432 1.92558 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c d 0.2015 0.403 0.6045 0.806 1.0075 SE +/- 0.006409, N = 3 0.892606 0.868291 0.895635 0.834423 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Parallel a b c d 300 600 900 1200 1500 SE +/- 9.16, N = 3 1120.31 1151.68 1116.52 1198.57 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c d 0.2745 0.549 0.8235 1.098 1.3725 SE +/- 0.01056, N = 6 1.16523 1.15557 1.22009 1.06101 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: fcn-resnet101-11 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: fcn-resnet101-11 - Device: CPU - Executor: Standard a b c d 200 400 600 800 1000 SE +/- 9.14, N = 6 858.20 865.31 819.56 942.94 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c d 3 6 9 12 15 SE +/- 0.04, N = 3 11.58 11.78 11.66 11.17 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Parallel a b c d 20 40 60 80 100 SE +/- 0.32, N = 3 86.34 84.90 85.79 89.51 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c d 6 12 18 24 30 SE +/- 0.16, N = 15 22.93 22.99 23.76 19.71 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ArcFace ResNet-100 - Device: CPU - Executor: Standard a b c d 11 22 33 44 55 SE +/- 0.41, N = 15 43.61 43.50 42.08 50.77 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c d 20 40 60 80 100 SE +/- 0.61, N = 3 74.69 75.90 77.30 72.54 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Parallel a b c d 4 8 12 16 20 SE +/- 0.12, N = 3 13.39 13.17 12.93 13.79 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c d 50 100 150 200 250 SE +/- 1.31, N = 15 216.67 222.38 226.04 193.67 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet50 v1-12-int8 - Device: CPU - Executor: Standard a b c d 1.1621 2.3242 3.4863 4.6484 5.8105 SE +/- 0.03387, N = 15 4.61373 4.49478 4.42207 5.16479 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c d 16 32 48 64 80 SE +/- 0.67, N = 3 70.12 69.13 68.94 64.08 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Parallel a b c d 4 8 12 16 20 SE +/- 0.16, N = 3 14.26 14.46 14.50 15.61 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c d 20 40 60 80 100 SE +/- 0.54, N = 3 80.99 75.86 78.95 71.94 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: super-resolution-10 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: super-resolution-10 - Device: CPU - Executor: Standard a b c d 4 8 12 16 20 SE +/- 0.11, N = 3 12.35 13.18 12.66 13.90 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel a b c d 0.1048 0.2096 0.3144 0.4192 0.524 SE +/- 0.004361, N = 3 0.465907 0.445551 0.456424 0.420335 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Parallel a b c d 500 1000 1500 2000 2500 SE +/- 24.44, N = 3 2146.34 2244.40 2190.94 2379.56 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard a b c d 0.1203 0.2406 0.3609 0.4812 0.6015 SE +/- 0.003579, N = 10 0.534553 0.533521 0.526244 0.471409 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: ResNet101_DUC_HDC-12 - Device: CPU - Executor: Standard a b c d 500 1000 1500 2000 2500 SE +/- 15.92, N = 10 1870.72 1874.34 1900.25 2122.37 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c d 6 12 18 24 30 SE +/- 0.09, N = 3 26.23 26.46 26.18 25.80 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Parallel a b c d 9 18 27 36 45 SE +/- 0.13, N = 3 38.13 37.80 38.19 38.76 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inferences Per Second, More Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c d 9 18 27 36 45 SE +/- 0.45, N = 3 39.79 39.42 39.71 38.06 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
ONNX Runtime Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard OpenBenchmarking.org Inference Time Cost (ms), Fewer Is Better ONNX Runtime 1.19 Model: Faster R-CNN R-50-FPN-int8 - Device: CPU - Executor: Standard a b c d 6 12 18 24 30 SE +/- 0.31, N = 3 25.13 25.37 25.18 26.28 1. (CXX) g++ options: -O3 -march=native -ffunction-sections -fdata-sections -mtune=native -flto=auto -fno-fat-lto-objects -ldl -lrt
Whisperfile Model Size: Tiny OpenBenchmarking.org Seconds, Fewer Is Better Whisperfile 20Aug24 Model Size: Tiny a b c d 12 24 36 48 60 SE +/- 0.38, N = 3 52.71 52.63 52.50 54.71
Whisperfile Model Size: Small OpenBenchmarking.org Seconds, Fewer Is Better Whisperfile 20Aug24 Model Size: Small a b c d 60 120 180 240 300 SE +/- 3.09, N = 3 259.91 261.74 257.38 269.18
Whisperfile Model Size: Medium OpenBenchmarking.org Seconds, Fewer Is Better Whisperfile 20Aug24 Model Size: Medium a b c d 160 320 480 640 800 SE +/- 2.92, N = 3 754.78 751.48 722.54 752.93
Phoronix Test Suite v10.8.5