pytorch.txt

ARMv8 Cortex-A78E testing with a NVIDIA Jetson Orin NX Engineering Developer Kit (36.3.0-gcid-36191598 BIOS) and Orin on Ubuntu 22.04 via the Phoronix Test Suite.

HTML result view exported from: https://openbenchmarking.org/result/2408262-NE-PYTORCHTX65&gru.

pytorch.txtProcessorMotherboardMemoryDiskGraphicsNetworkOSKernelDesktopDisplay ServerDisplay DriverVulkanCompilerFile-SystemScreen Resolutionall of themARMv8 Cortex-A78E @ 1.98GHz (8 Cores)NVIDIA Jetson Orin NX Engineering Developer Kit (36.3.0-gcid-36191598 BIOS)16GB128GB FORESEE XP1000F128GOrinRealtek RTL8111/8168/8411Ubuntu 22.045.15.136-tegra (aarch64)GNOME Shell 42.9X Server 1.21.1.4NVIDIA1.3.251GCC 11.4.0 + CUDA 12.2ext46582x1234OpenBenchmarking.org- Transparent Huge Pages: always- Scaling Governor: tegra194 performance- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of __user pointer sanitization + spectre_v2: Mitigation of CSV2 but not BHB + srbds: Not affected + tsx_async_abort: Not affected

pytorch.txttensorflow-lite: SqueezeNettensorflow-lite: Inception V4tensorflow-lite: NASNet Mobiletensorflow-lite: Mobilenet Floattensorflow-lite: Mobilenet Quanttensorflow-lite: Inception ResNet V2all of them8886.2212846622370.46848.703307.88117511OpenBenchmarking.org

TensorFlow Lite

Model: SqueezeNet

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: SqueezeNetall of them2K4K6K8K10KSE +/- 30.83, N = 38886.22

TensorFlow Lite

Model: Inception V4

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception V4all of them30K60K90K120K150KSE +/- 310.94, N = 3128466

TensorFlow Lite

Model: NASNet Mobile

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: NASNet Mobileall of them5K10K15K20K25KSE +/- 161.30, N = 322370.4

TensorFlow Lite

Model: Mobilenet Float

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet Floatall of them15003000450060007500SE +/- 50.47, N = 36848.70

TensorFlow Lite

Model: Mobilenet Quant

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Mobilenet Quantall of them7001400210028003500SE +/- 4.64, N = 33307.88

TensorFlow Lite

Model: Inception ResNet V2

OpenBenchmarking.orgMicroseconds, Fewer Is BetterTensorFlow Lite 2022-05-18Model: Inception ResNet V2all of them30K60K90K120K150KSE +/- 57.20, N = 3117511


Phoronix Test Suite v10.8.5