mnn 0905 2 x Hygon C86 7280 32-core testing with a Suma R6240H0 62DB32 v24002826 (CXYH051031 BIOS) and ASPEED on Ubuntu 24.04 via the Phoronix Test Suite. 2 x Hygon C86 7280 32-core - ASPEED - Suma R6240H0: Processor: 2 x Hygon C86 7280 32-core (64 Cores / 128 Threads), Motherboard: Suma R6240H0 62DB32 v24002826 (CXYH051031 BIOS), Chipset: Chengdu Haiguang IC Design Root Complex, Memory: 1008GB, Disk: 256GB MR9361-8i + 1920GB MR9361-8i + 12001GB MR9361-8i, Graphics: ASPEED, Network: 2 x Intel I350 + 4 x Mellanox MT27710 OS: Ubuntu 24.04, Kernel: 6.8.0-41-generic (x86_64), Compiler: GCC 13.2.0, File-System: ext4, Screen Resolution: 1024x768 Mobile Neural Network 2.9.b11b7037d Model: inception-v3 ms < Lower Is Better 2 x Hygon C86 7280 32-core - ASPEED - Suma R6240H0 . 78.09 |=================== Mobile Neural Network 2.9.b11b7037d Model: mobilenet-v1-1.0 ms < Lower Is Better 2 x Hygon C86 7280 32-core - ASPEED - Suma R6240H0 . 8.855 |=================== Mobile Neural Network 2.9.b11b7037d Model: MobileNetV2_224 ms < Lower Is Better 2 x Hygon C86 7280 32-core - ASPEED - Suma R6240H0 . 14.22 |=================== Mobile Neural Network 2.9.b11b7037d Model: SqueezeNetV1.0 ms < Lower Is Better 2 x Hygon C86 7280 32-core - ASPEED - Suma R6240H0 . 19.72 |=================== Mobile Neural Network 2.9.b11b7037d Model: resnet-v2-50 ms < Lower Is Better 2 x Hygon C86 7280 32-core - ASPEED - Suma R6240H0 . 73.06 |=================== Mobile Neural Network 2.9.b11b7037d Model: squeezenetv1.1 ms < Lower Is Better 2 x Hygon C86 7280 32-core - ASPEED - Suma R6240H0 . 13.11 |=================== Mobile Neural Network 2.9.b11b7037d Model: mobilenetV3 ms < Lower Is Better 2 x Hygon C86 7280 32-core - ASPEED - Suma R6240H0 . 6.812 |=================== Mobile Neural Network 2.9.b11b7037d Model: nasnet ms < Lower Is Better 2 x Hygon C86 7280 32-core - ASPEED - Suma R6240H0 . 54.22 |===================