patch testing by Michael Larabel.
Processor: AMD EPYC 7F52 16-Core @ 3.91GHz (16 Cores / 32 Threads), Motherboard: Supermicro H11DSi-NT v2.00 (2.1 BIOS), Chipset: AMD Starship/Matisse, Memory: 8 x 8192 MB DDR4-3200MT/s HMA81GR7CJR8N-XN, Disk: 280GB INTEL SSDPE21D280GA, Graphics: ASPEED, Monitor: VE228
OS: Ubuntu 20.04, Kernel: 5.11.0-rc6-phx (x86_64) 20210203, Desktop: GNOME Shell 3.36.1, Display Server: X Server 1.20.7, Display Driver: aspeed, Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq ondemand (Boost: Enabled) - CPU Microcode: 0x8301034
Python Notes: Python 2.7.18rc1 + Python 3.8.2
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0x8301034
Python Notes: Python 2.7.18rc1 + Python 3.8.2
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Processor: AMD EPYC 7F52 16-Core @ 3.91GHz (16 Cores / 32 Threads), Motherboard: Supermicro H11DSi-NT v2.00 (2.1 BIOS), Chipset: AMD Starship/Matisse, Memory: 8 x 8192 MB DDR4-3200MT/s HMA81GR7CJR8N-XN, Disk: 280GB INTEL SSDPE21D280GA, Graphics: ASPEED
OS: Ubuntu 20.04, Kernel: 5.11.0-rc6-phx (x86_64) 20210203, Desktop: GNOME Shell 3.36.1, Display Server: X Server 1.20.7, Display Driver: aspeed, Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 1024x768
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0x8301034
Python Notes: Python 2.7.18rc1 + Python 3.8.2
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Dav1d is an open-source, speedy AV1 video decoder. This test profile times how long it takes to decode sample AV1 video content. Learn more via the OpenBenchmarking.org test page.
This is a simple test of the x265 encoder run on the CPU with 1080p and 4K options for H.265 video encode performance with x265. Learn more via the OpenBenchmarking.org test page.
This test times how long it takes to build the GNU Debugger (GDB) in a default configuration. Learn more via the OpenBenchmarking.org test page.
This test measures the time needed to archive/compress two copies of the Linux 4.13 kernel source tree using RAR/WinRAR compression. Learn more via the OpenBenchmarking.org test page.
This is a test of GraphicsMagick with its OpenMP implementation that performs various imaging tests on a sample 6000x4000 pixel JPEG image. Learn more via the OpenBenchmarking.org test page.
Dav1d is an open-source, speedy AV1 video decoder. This test profile times how long it takes to decode sample AV1 video content. Learn more via the OpenBenchmarking.org test page.
This is a test of Kvazaar as a CPU-based H.265 video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel Open Visual Cloud Scalable Video Technology SVT-AV1 CPU-based multi-threaded video encoder for the AV1 video format with a sample 1080p YUV video file. Learn more via the OpenBenchmarking.org test page.
This is a test of Kvazaar as a CPU-based H.265 video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.
Redis is an open-source in-memory data structure store, used as a database, cache, and message broker. Learn more via the OpenBenchmarking.org test page.
This is a test of the Intel Open Visual Cloud Scalable Video Technology SVT-AV1 CPU-based multi-threaded video encoder for the AV1 video format with a sample 1080p YUV video file. Learn more via the OpenBenchmarking.org test page.
This is a simple test of the x265 encoder run on the CPU with 1080p and 4K options for H.265 video encode performance with x265. Learn more via the OpenBenchmarking.org test page.
OpenVKL is the Intel Open Volume Kernel Library that offers high-performance volume computation kernels and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.
LuxCoreRender is an open-source physically based renderer. This test profile is focused on running LuxCoreRender on the CPU as opposed to the OpenCL version. Learn more via the OpenBenchmarking.org test page.
This is a simple test of the x264 encoder run on the CPU (OpenCL support disabled) with a sample video file. Learn more via the OpenBenchmarking.org test page.
Rodinia is a suite focused upon accelerating compute-intensive applications with accelerators. CUDA, OpenMP, and OpenCL parallel models are supported by the included applications. This profile utilizes select OpenCL, NVIDIA CUDA and OpenMP test binaries at the moment. Learn more via the OpenBenchmarking.org test page.
CLOMP is the C version of the Livermore OpenMP benchmark developed to measure OpenMP overheads and other performance impacts due to threading in order to influence future system designs. This particular test profile configuration is currently set to look at the OpenMP static schedule speed-up across all available CPU cores using the recommended test configuration. Learn more via the OpenBenchmarking.org test page.
This is a test of Kvazaar as a CPU-based H.265 video encoder written in the C programming language and optimized in Assembly. Kvazaar is the winner of the 2016 ACM Open-Source Software Competition and developed at the Ultra Video Group, Tampere University, Finland. Learn more via the OpenBenchmarking.org test page.
This is a test of GraphicsMagick with its OpenMP implementation that performs various imaging tests on a sample 6000x4000 pixel JPEG image. Learn more via the OpenBenchmarking.org test page.
This test times how long it takes to compile the Godot Game Engine. Godot is a popular, open-source, cross-platform 2D/3D game engine and is built using the SCons build system and targeting the X11 platform. Learn more via the OpenBenchmarking.org test page.
OCRMyPDF is an optical character recognition (OCR) text layer to scanned PDF files, producing new PDFs with the text now selectable/searchable/copy-paste capable. OCRMyPDF leverages the Tesseract OCR engine and is written in Python. Learn more via the OpenBenchmarking.org test page.
Rodinia is a suite focused upon accelerating compute-intensive applications with accelerators. CUDA, OpenMP, and OpenCL parallel models are supported by the included applications. This profile utilizes select OpenCL, NVIDIA CUDA and OpenMP test binaries at the moment. Learn more via the OpenBenchmarking.org test page.
LuxCoreRender is an open-source physically based renderer. This test profile is focused on running LuxCoreRender on the CPU as opposed to the OpenCL version. Learn more via the OpenBenchmarking.org test page.
Redis is an open-source in-memory data structure store, used as a database, cache, and message broker. Learn more via the OpenBenchmarking.org test page.
Pennant is an application focused on hydrodynamics on general unstructured meshes in 2D. Learn more via the OpenBenchmarking.org test page.
This is a benchmark of the TensorFlow Lite implementation. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.
Rodinia is a suite focused upon accelerating compute-intensive applications with accelerators. CUDA, OpenMP, and OpenCL parallel models are supported by the included applications. This profile utilizes select OpenCL, NVIDIA CUDA and OpenMP test binaries at the moment. Learn more via the OpenBenchmarking.org test page.
This is a test of GraphicsMagick with its OpenMP implementation that performs various imaging tests on a sample 6000x4000 pixel JPEG image. Learn more via the OpenBenchmarking.org test page.
Intel OSPray is a portable ray-tracing engine for high-performance, high-fidenlity scientific visualizations. OSPray builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.
Open Image Denoise is a denoising library for ray-tracing and part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.
Hugin is an open-source, cross-platform panorama photo stitcher software package. This test profile times how long it takes to run the assistant and panorama photo stitching on a set of images. Learn more via the OpenBenchmarking.org test page.
Rodinia is a suite focused upon accelerating compute-intensive applications with accelerators. CUDA, OpenMP, and OpenCL parallel models are supported by the included applications. This profile utilizes select OpenCL, NVIDIA CUDA and OpenMP test binaries at the moment. Learn more via the OpenBenchmarking.org test page.
This is a test of GraphicsMagick with its OpenMP implementation that performs various imaging tests on a sample 6000x4000 pixel JPEG image. Learn more via the OpenBenchmarking.org test page.
Rodinia is a suite focused upon accelerating compute-intensive applications with accelerators. CUDA, OpenMP, and OpenCL parallel models are supported by the included applications. This profile utilizes select OpenCL, NVIDIA CUDA and OpenMP test binaries at the moment. Learn more via the OpenBenchmarking.org test page.
Intel OSPray is a portable ray-tracing engine for high-performance, high-fidenlity scientific visualizations. OSPray builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.
Pennant is an application focused on hydrodynamics on general unstructured meshes in 2D. Learn more via the OpenBenchmarking.org test page.
This is a test of GraphicsMagick with its OpenMP implementation that performs various imaging tests on a sample 6000x4000 pixel JPEG image. Learn more via the OpenBenchmarking.org test page.
Blender is an open-source 3D creation software project. This test is of Blender's Cycles benchmark with various sample files. GPU computing via OpenCL or CUDA is supported. Learn more via the OpenBenchmarking.org test page.
This is a benchmark of the TensorFlow Lite implementation. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.
This is a benchmark of John The Ripper, which is a password cracker. Learn more via the OpenBenchmarking.org test page.
This is a benchmark of the TensorFlow Lite implementation. The current Linux support is limited to running on CPUs. This test profile is measuring the average inference time. Learn more via the OpenBenchmarking.org test page.
Intel OSPray is a portable ray-tracing engine for high-performance, high-fidenlity scientific visualizations. OSPray builds off Intel's Embree and Intel SPMD Program Compiler (ISPC) components as part of the oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.
Processor: AMD EPYC 7F52 16-Core @ 3.91GHz (16 Cores / 32 Threads), Motherboard: Supermicro H11DSi-NT v2.00 (2.1 BIOS), Chipset: AMD Starship/Matisse, Memory: 8 x 8192 MB DDR4-3200MT/s HMA81GR7CJR8N-XN, Disk: 280GB INTEL SSDPE21D280GA, Graphics: ASPEED, Monitor: VE228
OS: Ubuntu 20.04, Kernel: 5.11.0-rc6-phx (x86_64) 20210203, Desktop: GNOME Shell 3.36.1, Display Server: X Server 1.20.7, Display Driver: aspeed, Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq ondemand (Boost: Enabled) - CPU Microcode: 0x8301034
Python Notes: Python 2.7.18rc1 + Python 3.8.2
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 4 February 2021 15:28 by user root.
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq schedutil (Boost: Enabled) - CPU Microcode: 0x8301034
Python Notes: Python 2.7.18rc1 + Python 3.8.2
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 4 February 2021 20:06 by user root.
Processor: AMD EPYC 7F52 16-Core @ 3.91GHz (16 Cores / 32 Threads), Motherboard: Supermicro H11DSi-NT v2.00 (2.1 BIOS), Chipset: AMD Starship/Matisse, Memory: 8 x 8192 MB DDR4-3200MT/s HMA81GR7CJR8N-XN, Disk: 280GB INTEL SSDPE21D280GA, Graphics: ASPEED
OS: Ubuntu 20.04, Kernel: 5.11.0-rc6-phx (x86_64) 20210203, Desktop: GNOME Shell 3.36.1, Display Server: X Server 1.20.7, Display Driver: aspeed, Compiler: GCC 9.3.0, File-System: ext4, Screen Resolution: 1024x768
Kernel Notes: Transparent Huge Pages: madvise
Compiler Notes: --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,gm2 --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none,hsa --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v
Processor Notes: Scaling Governor: acpi-cpufreq performance (Boost: Enabled) - CPU Microcode: 0x8301034
Python Notes: Python 2.7.18rc1 + Python 3.8.2
Security Notes: itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Full AMD retpoline IBPB: conditional IBRS_FW STIBP: conditional RSB filling + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 5 February 2021 05:12 by user root.