ddsa

Intel Core i7-1065G7 testing with a Dell 06CDVY (1.0.9 BIOS) and Intel Iris Plus ICL GT2 16GB on Ubuntu 22.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2306075-NE-DDSA3056816
Jump To Table - Results

View

Do Not Show Noisy Results
Do Not Show Results With Incomplete Data
Do Not Show Results With Little Change/Spread
List Notable Results
Show Result Confidence Charts
Allow Limiting Results To Certain Suite(s)

Statistics

Show Overall Harmonic Mean(s)
Show Overall Geometric Mean
Show Wins / Losses Counts (Pie Chart)
Normalize Results
Remove Outliers Before Calculating Averages

Graph Settings

Force Line Graphs Where Applicable
Convert To Scalar Where Applicable
Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Highlight
Result
Toggle/Hide
Result
Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
a
June 07 2023
  46 Minutes
b
June 07 2023
  45 Minutes
c
June 07 2023
  45 Minutes
Invert Behavior (Only Show Selected Data)
  45 Minutes

Only show results where is faster than
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


ddsaOpenBenchmarking.orgPhoronix Test SuiteIntel Core i7-1065G7 @ 3.90GHz (4 Cores / 8 Threads)Dell 06CDVY (1.0.9 BIOS)Intel Ice Lake-LP DRAM16GBToshiba KBG40ZPZ512G NVMe 512GBIntel Iris Plus ICL GT2 16GB (1100MHz)Realtek ALC289Intel Ice Lake-LP PCH CNVi WiFiUbuntu 22.045.19.0-41-generic (x86_64)GNOME Shell 42.2X Server + Wayland4.6 Mesa 22.0.1OpenCL 3.01.3.204GCC 11.3.0ext41920x1200ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDesktopDisplay ServerOpenGLOpenCLVulkanCompilerFile-SystemScreen ResolutionDdsa BenchmarksSystem Logs- Transparent Huge Pages: madvise- --build=x86_64-linux-gnu --disable-vtable-verify --disable-werror --enable-bootstrap --enable-cet --enable-checking=release --enable-clocale=gnu --enable-default-pie --enable-gnu-unique-object --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --enable-libphobos-checking=release --enable-libstdcxx-debug --enable-libstdcxx-time=yes --enable-link-serialization=2 --enable-multiarch --enable-multilib --enable-nls --enable-objc-gc=auto --enable-offload-targets=nvptx-none=/build/gcc-11-aYxV0E/gcc-11-11.3.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-aYxV0E/gcc-11-11.3.0/debian/tmp-gcn/usr --enable-plugin --enable-shared --enable-threads=posix --host=x86_64-linux-gnu --program-prefix=x86_64-linux-gnu- --target=x86_64-linux-gnu --with-abi=m64 --with-arch-32=i686 --with-build-config=bootstrap-lto-lean --with-default-libstdcxx-abi=new --with-gcc-major-version-only --with-multilib-list=m32,m64,mx32 --with-target-system-zlib=auto --with-tune=generic --without-cuda-driver -v - NONE / errors=remount-ro,relatime,rw / Block Size: 4096- Scaling Governor: intel_pstate powersave (EPP: balance_performance) - CPU Microcode: 0xb8 - Thermald 2.4.9 - Python 3.10.6- itlb_multihit: KVM: Mitigation of VMX disabled + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Mitigation of Clear buffers; SMT vulnerable + retbleed: Mitigation of Enhanced IBRS + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced IBRS IBPB: conditional RSB filling PBRSB-eIBRS: SW sequence + srbds: Mitigation of Microcode + tsx_async_abort: Not affected

abcResult OverviewPhoronix Test Suite100%114%127%141%dav1dLevelDBIntel Open Image DenoiseNeural Magic DeepSparse

ddsaleveldb: Fill Syncleveldb: Fill Syncleveldb: Seq Fillleveldb: Seq Filldav1d: Summer Nature 1080pdav1d: Chimera 1080pdav1d: Summer Nature 4Kleveldb: Rand Deleteleveldb: Rand Fillleveldb: Rand Filldav1d: Chimera 1080p 10-bitleveldb: Overwriteleveldb: Overwritedeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Synchronous Single-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Detection, YOLOv5s COCO - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Streamdeepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Asynchronous Multi-Streamdeepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Asynchronous Multi-Streamoidn: RT.ldr_alb_nrm.3840x2160 - CPU-Onlyleveldb: Rand Readdeepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Asynchronous Multi-Streamdeepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2 - Synchronous Single-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2 - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Streamleveldb: Seek Randdeepsparse: NLP Text Classification, BERT base uncased SST2 - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, BERT base uncased SST2 - Asynchronous Multi-Streamdeepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Synchronous Single-Streamdeepsparse: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamdeepsparse: CV Classification, ResNet-50 ImageNet - Synchronous Single-Streamleveldb: Hot Readdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: NLP Text Classification, DistilBERT mnli - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Streamdeepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Synchronous Single-Streamdeepsparse: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamdeepsparse: NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Streamoidn: RTLightmap.hdr.4096x4096 - CPU-Onlyoidn: RT.hdr_alb_nrm.3840x2160 - CPU-Onlyabc0.18397.29832.09927.6216.34181.3652.3126.16824.98335.4199.6738.423.00751.808138.57980.104512.481115.2629130.94724.8773410.007743.804345.6140.113.38110.7483185.597491.535521.8314106.5359.3858443.16012.25654.568201.04269.934723.425442.671233.815629.56013.567916.83942.177652.661918.98624.456224.39312.178916.624692.521110.8071460.95192.16940.050.100.17210.96718.2148.6371.35309.1785.2718.11319.89244.4236.0944.719.73857.220834.93374.351813.446513.7156145.76964.399454.577746.740642.76140.103.70411.7455169.855790.027122.1879112.66168.8754418.26382.39084.795205.2239.737624.089541.49634.344329.10543.651898.57612.220652.540619.02994.4322225.59642.1728918.473792.260610.8375460.64862.17080.050.100.24275.16919.73344.8371.23310.1984.6718.33819.91844.4213.8644.819.7658.352434.253471.584313.966413.6809146.05964.4129453.139842.42647.09570.103.64810.7824185.3998.326420.3261113.04278.8455432.44992.31244.623210.20889.503823.852941.906633.541429.80123.645911.93082.191451.645519.35974.4223226.10292.1694919.724492.304210.8324461.74382.16570.050.10OpenBenchmarking.org

LevelDB

LevelDB is a key-value storage library developed by Google that supports making use of Snappy for data compression and has other modern features. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterLevelDB 1.23Benchmark: Fill Synccba0.0450.090.1350.180.2250.20.10.11. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

OpenBenchmarking.orgMicroseconds Per Op, Fewer Is BetterLevelDB 1.23Benchmark: Fill Synccba2K4K6K8K10K4275.177210.978397.301. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

OpenBenchmarking.orgMicroseconds Per Op, Fewer Is BetterLevelDB 1.23Benchmark: Sequential Fillcba71421283519.7318.2132.101. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

OpenBenchmarking.orgMB/s, More Is BetterLevelDB 1.23Benchmark: Sequential Fillcba112233445544.848.627.61. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

dav1d

Dav1d is an open-source, speedy AV1 video decoder supporting modern SIMD CPU features. This test profile times how long it takes to decode sample AV1 video content. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is Betterdav1d 1.2.1Video Input: Summer Nature 1080pcba80160240320400371.23371.35216.341. (CC) gcc options: -pthread -lm

OpenBenchmarking.orgFPS, More Is Betterdav1d 1.2.1Video Input: Chimera 1080pcba70140210280350310.19309.17181.361. (CC) gcc options: -pthread -lm

OpenBenchmarking.orgFPS, More Is Betterdav1d 1.2.1Video Input: Summer Nature 4Kcba2040608010084.6785.2752.311. (CC) gcc options: -pthread -lm

LevelDB

LevelDB is a key-value storage library developed by Google that supports making use of Snappy for data compression and has other modern features. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds Per Op, Fewer Is BetterLevelDB 1.23Benchmark: Random Deletecba61218243018.3418.1126.171. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

OpenBenchmarking.orgMicroseconds Per Op, Fewer Is BetterLevelDB 1.23Benchmark: Random Fillcba61218243019.9219.8924.981. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

OpenBenchmarking.orgMB/s, More Is BetterLevelDB 1.23Benchmark: Random Fillcba102030405044.444.435.41. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

dav1d

Dav1d is an open-source, speedy AV1 video decoder supporting modern SIMD CPU features. This test profile times how long it takes to decode sample AV1 video content. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgFPS, More Is Betterdav1d 1.2.1Video Input: Chimera 1080p 10-bitcba50100150200250213.86236.09199.671. (CC) gcc options: -pthread -lm

LevelDB

LevelDB is a key-value storage library developed by Google that supports making use of Snappy for data compression and has other modern features. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMB/s, More Is BetterLevelDB 1.23Benchmark: Overwritecba102030405044.844.738.41. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

OpenBenchmarking.orgMicroseconds Per Op, Fewer Is BetterLevelDB 1.23Benchmark: Overwritecba61218243019.7619.7423.011. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamcba132639526558.3557.2251.81

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Asynchronous Multi-Streamcba91827364534.2534.9338.58

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamcba2040608010071.5874.3580.10

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Synchronous Single-Streamcba4812162013.9713.4512.48

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamcba4812162013.6813.7215.26

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Detection, YOLOv5s COCO - Scenario: Asynchronous Multi-Streamcba306090120150146.06145.77130.95

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamcba1.09742.19483.29224.38965.4874.41294.39904.8773

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Asynchronous Multi-Streamcba100200300400500453.14454.58410.01

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-Streamcba112233445542.4346.7443.80

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Asynchronous Multi-Streamcba112233445547.1042.7645.61

Intel Open Image Denoise

Open Image Denoise is a denoising library for ray-tracing and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.0Run: RT.ldr_alb_nrm.3840x2160 - Device: CPU-Onlycba0.02480.04960.07440.09920.1240.100.100.11

LevelDB

LevelDB is a key-value storage library developed by Google that supports making use of Snappy for data compression and has other modern features. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds Per Op, Fewer Is BetterLevelDB 1.23Benchmark: Random Readcba0.83341.66682.50023.33364.1673.6483.7043.3811. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-Streamcba369121510.7811.7510.75

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Asynchronous Multi-Streamcba4080120160200185.39169.86185.60

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamcba2040608010098.3390.0391.54

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Asynchronous Multi-Streamcba51015202520.3322.1921.83

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-Streamcba306090120150113.04112.66106.54

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Synchronous Single-Streamcba36912158.84558.87549.3858

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamcba100200300400500432.45418.26443.16

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Synchronous Single-Streamcba0.53791.07581.61372.15162.68952.31242.39082.2565

LevelDB

LevelDB is a key-value storage library developed by Google that supports making use of Snappy for data compression and has other modern features. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds Per Op, Fewer Is BetterLevelDB 1.23Benchmark: Seek Randomcba1.07892.15783.23674.31565.39454.6234.7954.5681. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-Streamcba50100150200250210.21205.22201.04

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, BERT base uncased SST2 - Scenario: Asynchronous Multi-Streamcba36912159.50389.73769.9347

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-Streamcba61218243023.8524.0923.43

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Scenario: Synchronous Single-Streamcba102030405041.9141.5042.67

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamcba81624324033.5434.3433.82

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Classification, ResNet-50 ImageNet - Scenario: Synchronous Single-Streamcba71421283529.8029.1129.56

LevelDB

LevelDB is a key-value storage library developed by Google that supports making use of Snappy for data compression and has other modern features. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgMicroseconds Per Op, Fewer Is BetterLevelDB 1.23Benchmark: Hot Readcba0.82151.6432.46453.2864.10753.6453.6513.5671. (CXX) g++ options: -fno-exceptions -fno-rtti -O3 -lgmock -lgtest -lsnappy

Neural Magic DeepSparse

This is a benchmark of Neural Magic's DeepSparse using its built-in deepsparse.benchmark utility and various models from their SparseZoo (https://sparsezoo.neuralmagic.com/). Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamcba2004006008001000911.93898.58916.84

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Document Classification, oBERT base uncased on IMDB - Scenario: Asynchronous Multi-Streamcba0.49960.99921.49881.99842.4982.19142.22062.1776

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamcba122436486051.6552.5452.66

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Text Classification, DistilBERT mnli - Scenario: Synchronous Single-Streamcba51015202519.3619.0318.99

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamcba1.00262.00523.00784.01045.0134.42234.43224.4560

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: CV Segmentation, 90% Pruned YOLACT Pruned - Scenario: Synchronous Single-Streamcba50100150200250226.10225.60224.39

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamcba0.49010.98021.47031.96042.45052.16942.17282.1780

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Asynchronous Multi-Streamcba2004006008001000919.72918.47916.62

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-Streamcba2040608010092.3092.2692.52

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Scenario: Synchronous Single-Streamcba369121510.8310.8410.81

OpenBenchmarking.orgms/batch, Fewer Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamcba100200300400500461.74460.65460.95

OpenBenchmarking.orgitems/sec, More Is BetterNeural Magic DeepSparse 1.5Model: NLP Token Classification, BERT base uncased conll2003 - Scenario: Synchronous Single-Streamcba0.48840.97681.46521.95362.4422.16572.17082.1694

Intel Open Image Denoise

Open Image Denoise is a denoising library for ray-tracing and part of the Intel oneAPI rendering toolkit. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.0Run: RTLightmap.hdr.4096x4096 - Device: CPU-Onlycba0.01130.02260.03390.04520.05650.050.050.05

OpenBenchmarking.orgImages / Sec, More Is BetterIntel Open Image Denoise 2.0Run: RT.hdr_alb_nrm.3840x2160 - Device: CPU-Onlycba0.02250.0450.06750.090.11250.100.100.10

55 Results Shown

LevelDB:
  Fill Sync:
    MB/s
    Microseconds Per Op
  Seq Fill:
    Microseconds Per Op
    MB/s
dav1d:
  Summer Nature 1080p
  Chimera 1080p
  Summer Nature 4K
LevelDB:
  Rand Delete
  Rand Fill
  Rand Fill
dav1d
LevelDB:
  Overwrite:
    MB/s
    Microseconds Per Op
Neural Magic DeepSparse:
  CV Classification, ResNet-50 ImageNet - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Detection, YOLOv5s COCO - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  CV Segmentation, 90% Pruned YOLACT Pruned - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Asynchronous Multi-Stream:
    items/sec
    ms/batch
Intel Open Image Denoise
LevelDB
Neural Magic DeepSparse:
  NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Text Classification, DistilBERT mnli - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Text Classification, BERT base uncased SST2 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Document Classification, oBERT base uncased on IMDB - Synchronous Single-Stream:
    ms/batch
    items/sec
LevelDB
Neural Magic DeepSparse:
  NLP Text Classification, BERT base uncased SST2 - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Sentiment Analysis, 80% Pruned Quantized BERT Base Uncased - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Classification, ResNet-50 ImageNet - Synchronous Single-Stream:
    items/sec
    ms/batch
LevelDB
Neural Magic DeepSparse:
  NLP Document Classification, oBERT base uncased on IMDB - Asynchronous Multi-Stream:
    ms/batch
    items/sec
  NLP Text Classification, DistilBERT mnli - Synchronous Single-Stream:
    ms/batch
    items/sec
  CV Segmentation, 90% Pruned YOLACT Pruned - Synchronous Single-Stream:
    items/sec
    ms/batch
  NLP Token Classification, BERT base uncased conll2003 - Asynchronous Multi-Stream:
    items/sec
    ms/batch
  NLP Question Answering, BERT base uncased SQuaD 12layer Pruned90 - Synchronous Single-Stream:
    ms/batch
    items/sec
  NLP Token Classification, BERT base uncased conll2003 - Synchronous Single-Stream:
    ms/batch
    items/sec
Intel Open Image Denoise:
  RTLightmap.hdr.4096x4096 - CPU-Only
  RT.hdr_alb_nrm.3840x2160 - CPU-Only