a4500

A4500

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2408293-NE-A4500582809
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
View Logs
Performance Per
Dollar
Date
Run
  Test
  Duration
a4500
August 28
  7 Hours, 49 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


a4500OpenBenchmarking.orgPhoronix Test SuiteAMD EPYC 7543P 32-Core (4 Cores / 8 Threads)Blade Shadow ShadowM v2.0 (1.1.3 BIOS)Intel 82G33/G31/P35/P31 + ICH91 x 16GB RAM-2400MT/s Blade 6VFNGH6OE2PFL5-81X215GB QEMU HDDRed Hat QXL paravirtual graphic card 20GBRed Hat Virtio deviceUbuntu 22.045.15.0-119-generic (x86_64)NVIDIAGCC 11.4.0 + CUDA 12.4ext41280x800KVMProcessorMotherboardChipsetMemoryDiskGraphicsNetworkOSKernelDisplay DriverCompilerFile-SystemScreen ResolutionSystem LayerA4500 BenchmarksSystem Logs- Transparent Huge Pages: madvise- CPU Microcode: 0xa0011d1- Python 3.10.12- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Mitigation of safe RET + spec_store_bypass: Mitigation of SSB disabled via prctl and seccomp + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Retpolines; IBPB: conditional; IBRS_FW; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected

a4500pytorch: CPU - 512 - Efficientnet_v2_lpytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 512 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 64 - ResNet-152pytorch: CPU - 512 - ResNet-50pytorch: CPU - 32 - ResNet-152pytorch: CPU - 256 - ResNet-50pytorch: CPU - 16 - ResNet-152pytorch: CPU - 64 - ResNet-50pytorch: CPU - 32 - ResNet-50pytorch: CPU - 16 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 1 - ResNet-50a45004.044.033.973.953.966.065.835.795.8214.745.8414.885.8314.8614.4814.809.5524.63OpenBenchmarking.org

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_la45000.9091.8182.7273.6364.545SE +/- 0.03, N = 84.04MIN: 3.62 / MAX: 4.11

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_la45000.90681.81362.72043.62724.534SE +/- 0.04, N = 74.03MIN: 3.63 / MAX: 4.11

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_la45000.89331.78662.67993.57324.4665SE +/- 0.04, N = 93.97MIN: 3.55 / MAX: 4.11

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_la45000.88881.77762.66643.55524.444SE +/- 0.05, N = 93.95MIN: 3.53 / MAX: 4.11

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_la45000.8911.7822.6733.5644.455SE +/- 0.04, N = 93.96MIN: 3.48 / MAX: 4.11

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_la4500246810SE +/- 0.01, N = 36.06MIN: 5.74 / MAX: 6.14

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-152a45001.31182.62363.93545.24726.559SE +/- 0.03, N = 35.83MIN: 5.56 / MAX: 5.96

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-152a45001.30282.60563.90845.21126.514SE +/- 0.04, N = 35.79MIN: 5.23 / MAX: 5.9

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152a45001.30952.6193.92855.2386.5475SE +/- 0.03, N = 35.82MIN: 5.43 / MAX: 5.93

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-50a450048121620SE +/- 0.14, N = 314.74MIN: 14.01 / MAX: 15.11

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152a45001.3142.6283.9425.2566.57SE +/- 0.05, N = 35.84MIN: 5.28 / MAX: 5.98

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-50a450048121620SE +/- 0.14, N = 314.88MIN: 14.26 / MAX: 15.24

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152a45001.31182.62363.93545.24726.559SE +/- 0.06, N = 35.83MIN: 5.57 / MAX: 5.96

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50a450048121620SE +/- 0.14, N = 314.86MIN: 12.62 / MAX: 15.27

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50a450048121620SE +/- 0.22, N = 1214.48MIN: 10.12 / MAX: 15.24

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50a450048121620SE +/- 0.13, N = 314.80MIN: 14.12 / MAX: 15.23

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152a45003691215SE +/- 0.03, N = 39.55MIN: 9.11 / MAX: 9.71

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50a4500612182430SE +/- 0.10, N = 324.63MIN: 22.88 / MAX: 25.22