nogaAllPyTorchResults AMD Ryzen 9 9950X 16-Core testing with a ASUS PRIME B650M-A II (3201 BIOS) and NVIDIA GeForce RTX 4060 Ti 16GB on Ubuntu 24.04 via the Phoronix Test Suite.
Compare your own system(s) to this result file with the
Phoronix Test Suite by running the command:
phoronix-test-suite benchmark 2501238-NE-NOGAALLPY69 ptRun2 Processor: AMD Ryzen 9 9950X 16-Core @ 5.75GHz (16 Cores / 32 Threads), Motherboard: ASUS PRIME B650M-A II (3201 BIOS), Chipset: AMD Device 14d8, Memory: 4 x 48GB DDR5-3600MT/s G Skill F5-6800J3446F48G, Disk: 2000GB Samsung SSD 980 PRO 2TB, Graphics: NVIDIA GeForce RTX 4060 Ti 16GB, Audio: NVIDIA Device 22bd, Network: 2 x Intel 10-Gigabit X540-AT2 + Realtek RTL8125 2.5GbE
OS: Ubuntu 24.04, Kernel: 6.8.0-51-generic (x86_64), Display Server: X Server 1.21.1.11, Display Driver: NVIDIA, Compiler: GCC 13.3.0 + CUDA 12.4, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madviseProcessor Notes: Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xb404023Python Notes: Python 3.12.3Security Notes: gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: ResNet-152 ptRun2 7 14 21 28 35 SE +/- 0.33, N = 3 29.80 MIN: 28.4 / MAX: 30.51
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-50 ptRun2 12 24 36 48 60 SE +/- 0.55, N = 3 53.21 MIN: 47.38 / MAX: 54.58
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: ResNet-50 ptRun2 12 24 36 48 60 SE +/- 0.65, N = 3 52.11 MIN: 47.37 / MAX: 53.95
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: ResNet-50 ptRun2 12 24 36 48 60 SE +/- 0.39, N = 15 52.37 MIN: 46.86 / MAX: 55.47
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: ResNet-152 ptRun2 5 10 15 20 25 SE +/- 0.18, N = 3 21.36 MIN: 20.23 / MAX: 21.66
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: ResNet-50 ptRun2 12 24 36 48 60 SE +/- 0.66, N = 3 52.52 MIN: 48.77 / MAX: 53.97
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: ResNet-152 ptRun2 5 10 15 20 25 SE +/- 0.15, N = 3 21.22 MIN: 20.15 / MAX: 22.02
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 512 - Model: ResNet-50 ptRun2 12 24 36 48 60 SE +/- 0.58, N = 5 52.98 MIN: 45.32 / MAX: 55.2
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: ResNet-152 ptRun2 5 10 15 20 25 SE +/- 0.26, N = 3 21.27 MIN: 20.06 / MAX: 21.77
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: ResNet-152 ptRun2 5 10 15 20 25 SE +/- 0.05, N = 3 21.81 MIN: 18.37 / MAX: 22.12
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 512 - Model: ResNet-152 ptRun2 5 10 15 20 25 SE +/- 0.17, N = 3 21.69 MIN: 20.36 / MAX: 22.06
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_l ptRun2 4 8 12 16 20 SE +/- 0.06, N = 3 16.18 MIN: 14.75 / MAX: 16.36
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_l ptRun2 3 6 9 12 15 SE +/- 0.08, N = 3 12.70 MIN: 11.27 / MAX: 13.33
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_l ptRun2 3 6 9 12 15 SE +/- 0.16, N = 3 12.56 MIN: 11.17 / MAX: 13.14
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_l ptRun2 3 6 9 12 15 SE +/- 0.05, N = 3 12.61 MIN: 11.4 / MAX: 13.2
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_l ptRun2 3 6 9 12 15 SE +/- 0.03, N = 3 12.49 MIN: 11.15 / MAX: 12.99
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_l ptRun2 3 6 9 12 15 SE +/- 0.06, N = 3 12.59 MIN: 11.43 / MAX: 13.06
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-50 ptRun2 120 240 360 480 600 SE +/- 1.81, N = 3 546.09 MIN: 476.52 / MAX: 554.58
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-152 ptRun2 50 100 150 200 250 SE +/- 1.05, N = 3 212.67 MIN: 166.05 / MAX: 216.41
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50 ptRun2 90 180 270 360 450 SE +/- 0.87, N = 3 401.90 MIN: 337.81 / MAX: 405.52
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-50 ptRun2 90 180 270 360 450 SE +/- 0.92, N = 3 402.56 MIN: 335.33 / MAX: 405.72
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50 ptRun2 90 180 270 360 450 SE +/- 0.58, N = 3 402.07 MIN: 335.52 / MAX: 405.33
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-152 ptRun2 40 80 120 160 200 SE +/- 0.07, N = 3 169.72 MIN: 134.18 / MAX: 170.75
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-50 ptRun2 90 180 270 360 450 SE +/- 0.11, N = 3 400.84 MIN: 336.14 / MAX: 403.07
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-152 ptRun2 40 80 120 160 200 SE +/- 0.11, N = 3 170.11 MIN: 155.88 / MAX: 171.23
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50 ptRun2 90 180 270 360 450 SE +/- 0.05, N = 3 400.50 MIN: 336.68 / MAX: 403.22
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-152 ptRun2 40 80 120 160 200 SE +/- 0.10, N = 3 170.14 MIN: 156.17 / MAX: 171.11
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-152 ptRun2 40 80 120 160 200 SE +/- 0.07, N = 3 170.09 MIN: 155.92 / MAX: 171.11
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-152 ptRun2 40 80 120 160 200 SE +/- 0.07, N = 3 170.15 MIN: 156.38 / MAX: 170.8
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: Efficientnet_v2_l ptRun2 30 60 90 120 150 SE +/- 0.42, N = 3 113.69 MIN: 85.58 / MAX: 115.03
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: Efficientnet_v2_l ptRun2 20 40 60 80 100 SE +/- 0.02, N = 3 102.33 MIN: 83.07 / MAX: 102.9
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: Efficientnet_v2_l ptRun2 20 40 60 80 100 SE +/- 0.01, N = 3 102.31 MIN: 82.12 / MAX: 102.84
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: Efficientnet_v2_l ptRun2 20 40 60 80 100 SE +/- 0.05, N = 3 102.31 MIN: 84.21 / MAX: 102.86
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: Efficientnet_v2_l ptRun2 20 40 60 80 100 SE +/- 0.01, N = 3 102.23 MIN: 82.95 / MAX: 102.8
OpenBenchmarking.org batches/sec, More Is Better PyTorch 2.2.1 Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: Efficientnet_v2_l ptRun2 20 40 60 80 100 SE +/- 0.01, N = 3 102.25 MIN: 82.89 / MAX: 102.61
ptRun2 Processor: AMD Ryzen 9 9950X 16-Core @ 5.75GHz (16 Cores / 32 Threads), Motherboard: ASUS PRIME B650M-A II (3201 BIOS), Chipset: AMD Device 14d8, Memory: 4 x 48GB DDR5-3600MT/s G Skill F5-6800J3446F48G, Disk: 2000GB Samsung SSD 980 PRO 2TB, Graphics: NVIDIA GeForce RTX 4060 Ti 16GB, Audio: NVIDIA Device 22bd, Network: 2 x Intel 10-Gigabit X540-AT2 + Realtek RTL8125 2.5GbE
OS: Ubuntu 24.04, Kernel: 6.8.0-51-generic (x86_64), Display Server: X Server 1.21.1.11, Display Driver: NVIDIA, Compiler: GCC 13.3.0 + CUDA 12.4, File-System: ext4, Screen Resolution: 1920x1080
Kernel Notes: Transparent Huge Pages: madviseProcessor Notes: Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xb404023Python Notes: Python 3.12.3Security Notes: gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected
Testing initiated at 24 January 2025 02:18 by user parallel.