nogaAllPyTorchResults

AMD Ryzen 9 9950X 16-Core testing with a ASUS PRIME B650M-A II (3201 BIOS) and NVIDIA GeForce RTX 4060 Ti 16GB on Ubuntu 24.04 via the Phoronix Test Suite.

Compare your own system(s) to this result file with the Phoronix Test Suite by running the command: phoronix-test-suite benchmark 2501238-NE-NOGAALLPY69
Jump To Table - Results

Statistics

Remove Outliers Before Calculating Averages

Graph Settings

Prefer Vertical Bar Graphs

Multi-Way Comparison

Condense Multi-Option Tests Into Single Result Graphs

Table

Show Detailed System Result Table

Run Management

Result
Identifier
Performance Per
Dollar
Date
Run
  Test
  Duration
ptRun2
January 24
  1 Hour, 41 Minutes
Only show results matching title/arguments (delimit multiple options with a comma):
Do not show results matching title/arguments (delimit multiple options with a comma):


nogaAllPyTorchResultsOpenBenchmarking.orgPhoronix Test SuiteAMD Ryzen 9 9950X 16-Core @ 5.75GHz (16 Cores / 32 Threads)ASUS PRIME B650M-A II (3201 BIOS)AMD Device 14d84 x 48GB DDR5-3600MT/s G Skill F5-6800J3446F48G2000GB Samsung SSD 980 PRO 2TBNVIDIA GeForce RTX 4060 Ti 16GBNVIDIA Device 22bd2 x Intel 10-Gigabit X540-AT2 + Realtek RTL8125 2.5GbEUbuntu 24.046.8.0-51-generic (x86_64)X Server 1.21.1.11NVIDIAGCC 13.3.0 + CUDA 12.4ext41920x1080ProcessorMotherboardChipsetMemoryDiskGraphicsAudioNetworkOSKernelDisplay ServerDisplay DriverCompilerFile-SystemScreen ResolutionNogaAllPyTorchResults PerformanceSystem Logs- Transparent Huge Pages: madvise- Scaling Governor: amd-pstate-epp powersave (EPP: balance_performance) - CPU Microcode: 0xb404023 - Python 3.12.3- gather_data_sampling: Not affected + itlb_multihit: Not affected + l1tf: Not affected + mds: Not affected + meltdown: Not affected + mmio_stale_data: Not affected + reg_file_data_sampling: Not affected + retbleed: Not affected + spec_rstack_overflow: Not affected + spec_store_bypass: Mitigation of SSB disabled via prctl + spectre_v1: Mitigation of usercopy/swapgs barriers and __user pointer sanitization + spectre_v2: Mitigation of Enhanced / Automatic IBRS; IBPB: conditional; STIBP: always-on; RSB filling; PBRSB-eIBRS: Not affected; BHI: Not affected + srbds: Not affected + tsx_async_abort: Not affected

nogaAllPyTorchResultspytorch: CPU - 1 - ResNet-50pytorch: CPU - 1 - ResNet-152pytorch: CPU - 16 - ResNet-50pytorch: CPU - 32 - ResNet-50pytorch: CPU - 64 - ResNet-50pytorch: CPU - 16 - ResNet-152pytorch: CPU - 256 - ResNet-50pytorch: CPU - 32 - ResNet-152pytorch: CPU - 512 - ResNet-50pytorch: CPU - 64 - ResNet-152pytorch: CPU - 256 - ResNet-152pytorch: CPU - 512 - ResNet-152pytorch: CPU - 1 - Efficientnet_v2_lpytorch: CPU - 16 - Efficientnet_v2_lpytorch: CPU - 32 - Efficientnet_v2_lpytorch: CPU - 64 - Efficientnet_v2_lpytorch: CPU - 256 - Efficientnet_v2_lpytorch: CPU - 512 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 1 - ResNet-50pytorch: NVIDIA CUDA GPU - 1 - ResNet-152pytorch: NVIDIA CUDA GPU - 16 - ResNet-50pytorch: NVIDIA CUDA GPU - 32 - ResNet-50pytorch: NVIDIA CUDA GPU - 64 - ResNet-50pytorch: NVIDIA CUDA GPU - 16 - ResNet-152pytorch: NVIDIA CUDA GPU - 256 - ResNet-50pytorch: NVIDIA CUDA GPU - 32 - ResNet-152pytorch: NVIDIA CUDA GPU - 512 - ResNet-50pytorch: NVIDIA CUDA GPU - 64 - ResNet-152pytorch: NVIDIA CUDA GPU - 256 - ResNet-152pytorch: NVIDIA CUDA GPU - 512 - ResNet-152pytorch: NVIDIA CUDA GPU - 1 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 16 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 32 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 64 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 256 - Efficientnet_v2_lpytorch: NVIDIA CUDA GPU - 512 - Efficientnet_v2_lptRun273.2729.8053.2152.1152.3721.3652.5221.2252.9821.2721.8121.6916.1812.7012.5612.6112.4912.59546.09212.67401.90402.56402.07169.72400.84170.11400.50170.14170.09170.15113.69102.33102.31102.31102.23102.25OpenBenchmarking.org

PyTorch

This is a benchmark of PyTorch making use of pytorch-benchmark [https://github.com/LukasHedegaard/pytorch-benchmark]. Learn more via the OpenBenchmarking.org test page.

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-50ptRun21632486480SE +/- 0.80, N = 373.27MIN: 66.63 / MAX: 75.92

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: ResNet-152ptRun2714212835SE +/- 0.33, N = 329.80MIN: 28.4 / MAX: 30.51

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-50ptRun21224364860SE +/- 0.55, N = 353.21MIN: 47.38 / MAX: 54.58

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-50ptRun21224364860SE +/- 0.65, N = 352.11MIN: 47.37 / MAX: 53.95

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-50ptRun21224364860SE +/- 0.39, N = 1552.37MIN: 46.86 / MAX: 55.47

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: ResNet-152ptRun2510152025SE +/- 0.18, N = 321.36MIN: 20.23 / MAX: 21.66

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-50ptRun21224364860SE +/- 0.66, N = 352.52MIN: 48.77 / MAX: 53.97

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: ResNet-152ptRun2510152025SE +/- 0.15, N = 321.22MIN: 20.15 / MAX: 22.02

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-50ptRun21224364860SE +/- 0.58, N = 552.98MIN: 45.32 / MAX: 55.2

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: ResNet-152ptRun2510152025SE +/- 0.26, N = 321.27MIN: 20.06 / MAX: 21.77

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: ResNet-152ptRun2510152025SE +/- 0.05, N = 321.81MIN: 18.37 / MAX: 22.12

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: ResNet-152ptRun2510152025SE +/- 0.17, N = 321.69MIN: 20.36 / MAX: 22.06

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 1 - Model: Efficientnet_v2_lptRun248121620SE +/- 0.06, N = 316.18MIN: 14.75 / MAX: 16.36

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 16 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.08, N = 312.70MIN: 11.27 / MAX: 13.33

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 32 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.16, N = 312.56MIN: 11.17 / MAX: 13.14

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 64 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.05, N = 312.61MIN: 11.4 / MAX: 13.2

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 256 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.03, N = 312.49MIN: 11.15 / MAX: 12.99

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: CPU - Batch Size: 512 - Model: Efficientnet_v2_lptRun23691215SE +/- 0.06, N = 312.59MIN: 11.43 / MAX: 13.06

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-50ptRun2120240360480600SE +/- 1.81, N = 3546.09MIN: 476.52 / MAX: 554.58

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: ResNet-152ptRun250100150200250SE +/- 1.05, N = 3212.67MIN: 166.05 / MAX: 216.41

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-50ptRun290180270360450SE +/- 0.87, N = 3401.90MIN: 337.81 / MAX: 405.52

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-50ptRun290180270360450SE +/- 0.92, N = 3402.56MIN: 335.33 / MAX: 405.72

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-50ptRun290180270360450SE +/- 0.58, N = 3402.07MIN: 335.52 / MAX: 405.33

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: ResNet-152ptRun24080120160200SE +/- 0.07, N = 3169.72MIN: 134.18 / MAX: 170.75

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-50ptRun290180270360450SE +/- 0.11, N = 3400.84MIN: 336.14 / MAX: 403.07

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: ResNet-152ptRun24080120160200SE +/- 0.11, N = 3170.11MIN: 155.88 / MAX: 171.23

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-50ptRun290180270360450SE +/- 0.05, N = 3400.50MIN: 336.68 / MAX: 403.22

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: ResNet-152ptRun24080120160200SE +/- 0.10, N = 3170.14MIN: 156.17 / MAX: 171.11

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: ResNet-152ptRun24080120160200SE +/- 0.07, N = 3170.09MIN: 155.92 / MAX: 171.11

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: ResNet-152ptRun24080120160200SE +/- 0.07, N = 3170.15MIN: 156.38 / MAX: 170.8

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 1 - Model: Efficientnet_v2_lptRun2306090120150SE +/- 0.42, N = 3113.69MIN: 85.58 / MAX: 115.03

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 16 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.02, N = 3102.33MIN: 83.07 / MAX: 102.9

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 32 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.01, N = 3102.31MIN: 82.12 / MAX: 102.84

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 64 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.05, N = 3102.31MIN: 84.21 / MAX: 102.86

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 256 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.01, N = 3102.23MIN: 82.95 / MAX: 102.8

OpenBenchmarking.orgbatches/sec, More Is BetterPyTorch 2.2.1Device: NVIDIA CUDA GPU - Batch Size: 512 - Model: Efficientnet_v2_lptRun220406080100SE +/- 0.01, N = 3102.25MIN: 82.89 / MAX: 102.61